
Session	2:	Packages,	project	organization,	and	notes	on	formatting	 	 	1	

R	Workshop,	Session	2	
Packages,	project	organization,	and	

notes	on	formatting	
	
1. Packages
Many programs include all packages with the initial program installation by default, but
R does not. Instead, when you first install R, the program itself is installed along with a
set of “base” packages. These packages are simply text files with the “.R” extension that
contain functions to perform specific tasks. Every time R is opened, these “base”
packages are loaded (“sourced”) and the contents of the scripts are submitted to your
current R session.

There are thousands of additional packages available on the CRAN website to do all
kinds of specialized analyses (phylogenetic analyses, ecological analyses, special plotting
functions, etc.). These packages are not automagically downloaded with R, but you can
download them yourself. To see what’s available, check http://cran.r-project.org under
Packages.

To install a package:
install.packages(“package-name”) # the quotation marks are necessary
R will prompt you to choose a CRAN mirror site; select one that’s nearby.

To source a package:
library(“package-name”) # Now all the functions in the package are available
for your use.

2. Project Organization
Why?
 Facilitate future work: good organization makes it easier to pick up where you
left off the next time you return to a project
 Collaborations are easier because you can send a single folder to colleague(s) for
modification.
 Exact repeatability is easier by you or others in the near or distant future.
 Saves you time plowing through files and folders, trying to remember where
things are and what you did last.

Three elements for good organization:
1. Standard folder and file hierarchy. Try to strike a balance between having enough
folders to organize a project, but not so many that you spend a lot of time navigating your
folder hierarchy. House each project in a folder, with subdirectories for different aspects
of the project:
2. Foolproof data storage. Data are sacrosanct. It is far too easy to accidentally alter or
destroy any or all of your data, so you need to have good strategies for preventing data

Session	2:	Packages,	project	organization,	and	notes	on	formatting	 	 	2	

corruption. I keep data in two forms: a spreadsheet where it’s easy to initially enter the
data, and a text file (tab- or comma-delimited) which is easy to load into R, but difficult
to edit. Separate your data and analyses into two entirely separate entities. R allows you
to load in and mess with data in any number of ways without altering the original data.
3. Well-documented R scripts. These allow you to repeat any analyses at any time with
your current data, modified versions of that data, or even new datasets.
 General organizational practices:
 Set the working directory first
 Then, load any libraries
 Then, add in any project-specific functions
 Then, load data, run analyses, and make figures.
 Your goal is to optimize legibility and functionality. Balance between the number
of scripts and script length/complexity (e.g. you may want separate scripts for figures and
functions). It’s generally best to have a main project script that functions as a “parent”
script – the only one you need to open because all other scripts are called by it. But if
you use this approach, be sure to document in your subscripts what they depend on and
where they are called from!

3. A few brief notes on formatting…
R is very flexible, so it is useful to adopt guidelines to make your code easier to return to
over time, and to share with others. I recommend finding general style guides to develop
your own formatting standards so your code is legible and easier to share with others.
Below is a brief outline of suggestions derived from Google’s R Style Guide:
https://google.github.io/styleguide/Rguide.xml

A. File names should end in .R and be meaningful
a. Good: evaluate_risk.R
b. Bad: foo.R

B. Variable names should be meaningful. Don’t use pre-existing function names!
a. ex. variable.name or variableName

C. Use action verbs for function names, and capitalize the first letter.
a. Good: GetWeights
b. Bad: Weights

D. Spacing: Put spacing around all binary operators (=, +, -, <-, etc…). Place
one space after a comma (but not before a comma).

a. Extra spaces can be helpful for aligning separate lines of code. Avoid tabs!
E. Assignment: ALWAYS use <- for assignment, NOT = !!

a. Use an equal sign for arguments within a function
i. normdist <- rnorm(1, mean=10, sd=1)

F. # Comment. # Your. # Code. # Short comments on the same line. Two spaces
after code, then # space Comment.

a. # Longer comments on a separate line.

Consistent style allows your collaborators to focus on what you are saying, not how you
are saying it.

Session	2:	Packages,	project	organization,	and	notes	on	formatting	 	 	3	

4. Where to go for help
Built-in documentation
R has a comprehensive built-in help system. The help documentation may seem
unfriendly at first, but it is all organized in the same way. Familiarize yourself with the
structure of the help documentation to make the most of it.

help(foo) # Help about function foo
?foo # Same thing.

help.search(“fooish”) # If you don’t remember the exact function name
??fooish # Same thing

apropos(“foo”) # List all functions containing the string foo
example(“foo”) #Show an example of function foo

Some packages also have vignettes for how to use the package:

vignette() # Show available vignettes
vignette(“foo”) # Show specific vignette for foo

Help from other human beings
Stack Overflow: http://stackoverflow.com
 A question-and-answer site. Input search terms to narrow down to specific
questions and examples, or to determine whether anyone has answered your question
before. Many people are helpful, but may get snarky if it becomes clear that you have
not clearly described your question/problem or looked around at all for a previous
answer.

There is also an R-help e-mail list: http://stat.ethz.ch/mailman/listinfo/r-help
 Read the FAQ before posting. The archives are also searchable.

Create your own R Users Group as needed!

