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Breeders that receive help age more slowly in a
cooperatively breeding bird
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Terry Burke 5, Jan Komdeur1 & David S. Richardson3,6

Helping by group members is predicted to lead to delayed senescence by affecting the trade-

off between current reproduction and future survival for dominant breeders. Here we

investigate this prediction in the Seychelles warbler, Acrocephalus sechellensis, in which mainly

female subordinate helpers (both co-breeders and non-breeding helpers) often help domi-

nants raise offspring. We find that the late-life decline in survival usually observed in this

species is greatly reduced in female dominants when a helper is present. Female dominants

with a female helper show reduced telomere attrition, a measure that reflects biological

ageing in this and other species. Finally, the probability of having female, but not male,

helpers increases with dominant female age. Our results suggest that delayed senescence is a

key benefit of cooperative breeding for elderly dominants and support the idea that sociality

and delayed senescence are positively self-reinforcing. Such an effect may help explain why

social species often have longer lifespans.
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Variation in ageing patterns observed across taxa is enor-
mous, but the causes of this variation are still poorly
understood1. Intriguingly, even within the same species

there is often extensive individual variation in the onset and rate
of actuarial senescence—the progressive age-dependent decline in
survival2. Elucidating the causes of among-individual variation in
senescence is crucial to our understanding of the mechanisms and
trade-offs that drive ageing within and across species. Patterns of
sociality contribute significantly to explaining variation in ageing
rates across species3,4. However, while studies have investigated
relationships between intraspecific competition and senescence5,6,
studies investigating the relationship between sociality and
senescence at the intraspecific level are rare and the direction of
causality of this relationship remains to be resolved7,8.

In cooperative breeding systems, parental care is generally shared
between socially dominant individuals and (often related) sub-
ordinate helpers9. The alloparental care provided by helpers often
allows the dominants to reduce their current reproductive invest-
ment, which may then reduce the negative impacts of reproductive
effort on the condition of dominants (e.g. through reducing oxidative
stress10,11) and increase the survival of helped dominants12–16. The
benefits of having helpers are predicted to be greater for young
dominants, because young dominants may have little breeding
experience17,18, and for elderly dominants, because elderly indivi-
duals may suffer greater costs of reproduction due to senescent
declines in physiological condition19. Hence, for elderly dominants a
key benefit of receiving help might be that it delays the onset, and
reduces the rate, of actuarial senescence. However, studies testing
whether helping alleviates actuarial senescence in dominants are
lacking (but see ref. 20). If the benefits of receiving help increase with
a dominant’s age, there should be a strong incentive for elderly
dominants to recruit and retain helpers. Therefore, we predict that
the likelihood of having helpers increases with age in dominants.

In this study, we use 15 years of data on the facultative
cooperatively breeding Seychelles warbler Acrocephalus sechel-
lensis to study associations between actuarial senescence and
cooperative breeding. The Seychelles warbler population on
Cousin Island provides a useful model system in which to study
this as individuals are followed throughout their entire lives;21

The majority of individuals (>96% since 1997) have been indi-
vidually colour-ringed and are monitored annually, and inter-
island dispersal is extremely rare, allowing for accurate measures
of survival22–24. Senescent declines in survival occur in the Sey-
chelles warbler25,26, but whether helpers offset such late-life

declines in survival has not yet been investigated. In the Sey-
chelles warbler, telomere shortening—a measure that has been
shown to reflect biological ageing in various organisms27,28—
predicts survival26 and reflects physiological costs29–31. Each year,
about half of the ca 115 territories contain one to five sexually
mature subordinates in addition to the dominant breeding pair.
Some (20% of males and 42% of females (this study)) of these
subordinates act as helpers and provide alloparental care (max.
three helpers per territory) and assist in incubation (females only)
and provisioning offspring32,33. In response to being helped,
dominants reduce their incubation attendance (this study) and
provisioning rate34 (but see ref. 32), but still gain increased
reproductive success35. As the majority of helpers are female, only
female helpers incubate, and provisioning rates of female helpers
are generally higher than those of male helpers35–37, we expect
dominants to benefit more from having female helpers.

Here, we test the prediction that for dominants a reduced rate
of both actuarial senescence and telomere shortening is associated
with having helpers, especially female helpers. We also test
whether the likelihood of having female helpers increases with age
in dominants. We find that dominant females benefit from hav-
ing female helpers in terms of delayed senescence and reduced
telomere attrition. In addition, we find that older female, but not
male, dominants are more likely to have female helpers. Our
results suggest that delayed senescence is a key benefit of coop-
erative breeding for elderly female dominants, and support the
idea that sociality and delayed senescence are positively self-
reinforcing. Such an effect may help explain why social species
often have longer lifespans than non-social species.

Results
Incubation attendance. Female dominants with a female helper
had 21% lower incubation attendance (Supplementary Fig. 1;
Supplementary Table 1; mean ± SE= 39.9% ± 1.8% of time
incubating, n= 69) than dominant females without a female
helper (mean ± SE= 50.4% ± 0.8%, n= 277) and the total incu-
bation attendance at a nest was 45% higher for nests with female
helpers (Supplementary Table 1; mean ± SE= 73.2% ± 2.0%, n=
69). Incubation attendance was not associated with age of the
dominant female (Supplementary Table 1).

Helping and actuarial senescence. Survival was strongly age-
dependent and declined progressively among elderly dominants

Table 1 Age-dependent survival of dominants in relation to helper presence

(a) Dominant female (b) Dominant male

Variable Estimate SE z P Estimate SE z P

Intercept 1.98 0.14 13.84 <0.001 1.73 0.17 10.20 <0.001
Age −0.58 0.25 −2.28 0.023 0.01 0.18 0.08 0.936
Age2 −0.67 0.23 −2.93 0.003 −0.60 0.22 −2.80 0.005
Territory quality 0.41 0.17 2.44 0.015 0.05 0.16 0.33 0.742
Helper (Y/N) −0.16 0.24 −0.65 0.513 0.41 0.22 1.90 0.057
Number of subordinates 0.22 0.19 1.18 0.239 −0.30 0.16 −1.95 0.051
Age × helper 1.25 0.39 3.18 0.001 0.64 0.35 1.82 0.069
Age × number of subordinates −0.12 0.36 −0.33 0.740 −0.11 0.28 −0.41 0.685

Random Variance 1571 Observations Variance 1581 Observations

Individual ID 0.27 463 Individuals <0.01 491 Individuals
Year 0.11 15 years 0.29 15 years

Final models contained all main effects and significant interaction terms
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of both sexes (Table 1; Fig. 1). When averaged across all ages,
annual survival probabilities of female dominants without helpers
(84%) and with helpers (86%) were similar (two proportion z-
test: χ2= 0.29, P= 0.590). However, the impact of helpers of
either sex on dominant female survival depended on the domi-
nant female’s age. Survival of female dominants that were not
assisted by helpers declined strongly with age, but the survival of
dominants that received help showed little age-dependence and
the late-life decline was much less pronounced (Table 1; Fig. 1).
Indeed, survival of female dominants < 7 years old (i.e. before the
onset of reproductive senescence in this species) was similar for
individuals with (84%) or without (87%) a helper of either sex
(two proportion z-test: χ2= 0.87, P= 0.352), but among elderly
dominants (>6 years) survival was higher for dominants with
helpers (89%) than for dominants without (78%; two proportion
z-test: χ2= 6.40, P= 0.011), which is due to a decline in survival
of elderly dominants without helpers (Fig. 1). The effect of
helpers on survival was independent of the number of sub-
ordinates (helpers and non-helpers) that were present in the
territory, or its interaction with age (Table 1). This indicates that
helping by subordinates, rather than (factors associated with) the
presence of subordinates, predicted the age-related survival effect
in dominants. A model that included two separate binary vari-
ables for female and male helper presence instead of presence of a
helper of either sex was less well supported by the data (ΔAICc=
3.9), but suggested that the age-dependent impact of helper
presence on dominant female survival is mainly explained by the
presence of female helpers (Supplementary Table 2). We did not
find an association between dominant female (age-dependent)
survival and male helper presence (Table 1), though the like-
lihood of detecting such an effect is reduced because male helpers
are much less common than female helpers, especially among
elderly dominants (Supplementary Fig. 2).

Similar to the impact of helpers on the age-dependent survival
of female dominants, we found some evidence for an association
between (female) helper presence and age-dependent survival of
male dominants, although this was not, or only marginally,
statistically significant (helper of either sex × dominant male age,
GLMM: P= 0.069: Table 1, Fig. 1; female helper × dominant
male age, GLMM: P= 0.049, Supplementary Table 2). Again, a

model that included two separate binary variables for female and
male helper presence instead of presence of a helper of either sex
was less well supported (ΔAICc= 2.8). When averaged across all
ages, the annual survival probabilities of male dominants without
helpers (82%) and with helpers (84%) were similar (two
proportion z-test: χ2= 0.71, P= 0.400). Survival of male
dominants < 7 years old was similar for individuals with (83%)
or without (83%) a helper of either sex (two proportion z-test: χ2

= 0.02, P= 0.879). Among elderly dominants (>6 years) survival
tended to be higher for male dominants with helpers (86%) than
for male dominants without (79%), although this difference was
not significant (two proportion z-test: χ2= 1.44, P= 0.230).

Telomere attrition rate. The within-individual rate of attrition
of telomeres (ΔRTL) differed between dominant females with
and without a female helper (Table 2; Fig. 2), or a helper of
either sex (Supplementary Table 3). The number of subordinates
that was present in a territory also predicted ΔRTL in dominant
females, but this effect was in the opposite direction to that
observed for helper presence (Table 2). We then tested whether
ΔRTL was below zero in unassisted dominant females and above
zero in dominant females with a female helper. ΔRTL declined
in unassisted dominant females (Fig. 2; one-sided t-test: t37
=−2.27, P= 0.015), but the apparent increase in ΔRTL in
dominant females with a helper was not significant (Fig. 2; one-
sided t-test: t6= 1.27, P= 0.125). For dominant males, ΔRTL
was not associated with female helper presence (Table 2; Fig. 2).

Age-dependent helper prevalence and subordinate reproduc-
tion. Overall, older (≥2 years old) subordinates were more likely
to help (mean ± SE= 0.56 ± 0.03, n= 292) than younger (≤1 year
old) subordinates (mean ± SE= 0.23 ± 0.02, n= 647), and female
subordinates (mean ± SE= 0.42 ± 0.02, n= 571) more than male
subordinates (mean ± SE= 0.20 ± 0.02, n= 368; Table 3). The
likelihood that a subordinate helped was associated with the age
of the dominant female, but the direction of this association was
dependent on the subordinate’s sex: positive for female sub-
ordinates and negative for male subordinates (Table 3; Fig. 3).
Indeed, among female dominants with a helper, the likelihood
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Fig. 1 Age-dependent survival of dominants in relation to helper presence. a Dominant females, b dominant males. Solid lines are model predicted slopes ±
SE for dominants that were assisted by helpers during the main breeding season and dashed lines are for dominants without helpers. Data shown are
means (circles) and 95% binomial confidence intervals (error bars) for 3-year age intervals (e.g. 1–3 year) based on raw data. In the analyses, age was a
continuous variable. Numbers are sample sizes. Source data are provided as a Source Data file
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that a helper was female increased with the female dominant’s age
(Table 4). As a result, elderly dominants almost exclusively had
female, but not male, helpers (Fig. 4). Neither the likelihood that a
male or female subordinate helped, nor the sex ratio among
helpers, were related to the dominant male’s age (Tables 3, 4;
Figs. 3, 4).

The likelihood that a subordinate female reproduced was higher
for older (≥2 years old) subordinates (0.30 ± 0.03, mean ± SE, n=
227), while younger (≤1 year old) subordinates almost never
reproduced (0.02 ± 0.01, mean ± SE, n= 344) (Supplementary
Table 4). Subordinate reproduction was not related to the age of

the dominant female or male, territory quality and the number of
subordinates that was present in the territory (Supplementary
Table 4).

Discussion
Sociality might play a key role in explaining some of the con-
siderable inter-specific and intraspecific variation in senescence
observed in nature3,4, but it is currently unclear whether social
phenomena like alloparental care can truly affect senescence
patterns, or whether senescence can explain variation in social
behaviour. In this study, we found that while the survival of
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Fig. 2 Annual change in relative telomere length (delta RTL) in dominants in relation to female helper presence. a Dominant females, b dominant males.
The dashed line indicates no telomere shortening or lengthening. Filled circles are means and s.e.m. of raw data, open circles are raw data points. Source
data are provided as a Source Data file

Table 2 Annual change in relative telomere length (RTL) in dominants in relation to female helper presence

(a) Dominant female (b) Dominant male

Variable Estimate SE t P Estimate SE t P

Intercept −0.20 0.05 −4.30 <0.001 −0.07 0.07 −0.95 0.351
Initial RTL −0.72 0.07 −10.23 <0.001 −0.56 0.08 −6.74 <0.001
Age 0.15 0.07 2.08 0.044 −0.08 0.09 −0.86 0.397
Territory quality 0.00 0.07 −0.04 0.971 0.12 0.08 1.46 0.150
Offspring produced (Y/N) 0.03 0.07 0.38 0.709 0.08 0.08 0.96 0.341
Female helper (Y/N) 0.45 0.12 3.73 <0.001 0.03 0.10 0.25 0.802
Number of subordinates −0.31 0.09 −3.44 0.001 −0.01 0.09 −0.12 0.905

Random Variance 45 Observations Variance 74 Observations

Individual ID <0.01 39 Individuals 0.02 58 Individuals
Cohort <0.01 18 Cohorts 0.02 16 Cohorts
Year <0.01 11 years <0.01 9 years
Residual 0.05 0.07

Final models contained all main effects and significant interaction terms
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unassisted elderly dominants of both sexes declined progressively
with age, the age-specific decline in survival of female dominants
was greatly reduced if they were assisted by helpers. We also
found that helper presence was associated with reduced telomere
shortening (a marker of biological ageing in this and many other
species27,28) in dominant females, but not in dominant males. In
addition, we found that elderly female, but not male, dominants
were more likely to have female helpers and less likely to have
male helpers. In other words, our results suggest that helpers may
contribute to delay senescence in female dominants and that, at
the same time, dominant females acquire more female helpers as
they get older.

In cooperatively breeding species, dominants often show
higher survival when assisted by helpers14–16,38, but an absence of
survival differences between individuals with and without helpers
is also frequently observed in cooperatively breeding birds16. The
finding that in the Seychelles warbler only elderly individuals, that
normally have lower survival because of senescence, benefit from

receiving help, could be caused by a ceiling effect: the very high
annual survival in young and mid-aged individuals means there is
little potential for improvement in survival, but there is much
more scope for this in elderly individuals with lower survival
probabilities. Another explanation may be that the costs of
reproduction, or maintaining a territory, only become apparent in
individuals suffering senescence, not in younger individuals that
are in better physiological condition19.

Survival benefits for dominants can arise because helpers allow
dominants to reduce their costs of reproduction, thereby allowing
them to invest more resources in somatic maintenance12,13. For
example, helpers may reduce the costs of incubation and
investment in eggs for the dominant female15,39. In dominant
female Seychelles warblers, incubation costs are probably lower
for those that have a helper as assisted females reduce their
incubation attendance by 21% (this study), while hatching success
increases40. The fact that we only detected reduced telomere
shortening in female dominants with female helpers, but not in
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Table 3 The likelihood that a subordinate helped in relation to the dominant’s age and the subordinate’s sex

(a) Dominant female (b) Dominant male

Variable Estimate SE z P Estimate SE z P

Intercept −1.09 0.21 −5.14 <0.001 −1.12 0.21 −5.31 <0.001
Dominant age 0.43 0.22 1.98 0.048 0.04 0.19 0.23 0.821
Territory quality 0.10 0.23 0.42 0.674 0.14 0.23 0.61 0.543
Subordinate sex (male) −1.05 0.21 −5.10 <0.001 −0.95 0.20 −4.80 <0.001
Subordinate age (older) 1.73 0.24 7.26 <0.001 1.85 0.24 7.62 <0.001
Number of subordinates −0.27 0.20 −1.38 0.167 −0.29 0.19 −1.50 0.134
Dominant age * Subordinate sex −1.00 0.41 −2.43 0.015 0.07 0.37 0.18 0.858

Random Variance 939 Observations Variance 929 Observations

Group ID 0.48 673 Groups 0.29 671 Groups
Individual ID 0.16 294 Individuals 0.30 302 Individuals
Year 0.28 15 years 0.27 15 years

Final models contained all main effects and significant interaction terms
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male dominants, is perhaps explained by the fact that only
females incur significant costs of incubation in this species, and
these costs are alleviated by female helpers.

The telomere results contrast with our analysis of survival,
where we found that the presence of female helpers appears to
have similar effects on age-specific survival of both dominant
females and males, although this was only significant for domi-
nant females. This suggests that benefits other than reducing the
costs of incubation play a role in survival. Intriguingly, we also
observed that telomere lengths tended to increase in female
dominants that were assisted by female helpers (although this
increase was not significant), but declined in unassisted female
dominants. Although measurement error may explain some
observations of telomere length increasing over time within
individuals41, there is increasing evidence that actual telomere
length increases do occur42, in which telomerase expression may

play a key role43. Of particular relevance, there is clear evidence
that telomere lengthening occurs in the Seychelles warbler31,
where mortality has been linked to (shorter) telomere length26.

Our analyses suggest that the presence of helpers, rather than
of subordinate group members per se (which is often challenging
to separate in cooperatively breeding species44), explains the
higher late-life survival of dominants with helpers. A limitation of
our study, and of most other studies on cooperatively breeding
species44, is that we cannot easily disentangle the impact of help
from the quality or condition of the dominants. For example,
better quality individuals with longer lifespans and higher
reproductive output might be more likely to have helpers because
they have successfully reproduced in previous years. However, the
impact of helpers on survival persisted when the number of
subordinates was also included in the models, which suggests that
our results are not simply explained by differences in individual
quality or territory quality. Moreover, the greater telomere
shortening (a longitudinal measure across two points within each
female) observed in female dominants that were not helped,
compared to the lack of shortening in helped females, suggests
that helpers prevent a deterioration of the dominant female’s
condition, rather than that dominants with a helper were initially
in better condition (of better quality). Future studies should
attempt experimental manipulations of the amount of help that
dominants receive to confirm the causality of the associations
found in our study. Experimental manipulations will also help to
test the possibility that subordinates are more likely to help when
they assess the dominants as being in better physiological con-
dition or more productive.

The survival benefits of receiving help may reduce the fitness
costs of senescence in elderly individuals. Elderly dominant
female Seychelles warblers show a drop in reproductive output
during the last year of life and the magnitude of this drop
increases with age45. If having helpers allows dominants to
postpone their death, this may compensate for the decline in
reproductive output, and enhance the dominant’s late-life
reproductive performance. If help is beneficial for elderly domi-
nants, then dominants might offer subordinates incentives to stay
and help (e.g. food, protection or opportunities to reproduce),
and try to retain subordinates that they would normally have
evicted from their territory. Subordinates may benefit from
increased survival of the dominants as this enhances the indirect
fitness benefits received by related subordinates37,46 and survival
of the subordinates33. It also provides female subordinates with
an opportunity to gain direct benefits in the form of co-
breeding35. Here we do not tease apart whether the effects out-
lined above arise from co-breeding or alloparental helping as

Table 4 The likelihood that a helper is a male in relation to the age of the dominants

(a) Dominant female (b) Dominant male

Variable Estimate SE z P Estimate SE z P

Intercept −0.82 0.25 −3.25 0.001 −0.62 0.22 −2.77 0.006
Dominant age −1.07 0.42 −2.54 0.011 0.27 0.33 0.82 0.411
Territory quality 0.16 0.36 0.44 0.662 0.24 0.35 0.68 0.494
Subordinate age (older) −1.47 0.36 −4.04 <0.001 −1.73 0.36 −4.79 <0.001
Number of subordinates −0.07 0.36 −0.20 0.841 −0.08 0.35 −0.23 0.820

Random Variance 310 Observations Variance 309 Observations

Group ID <0.01 271 Groups <0.01 270 Groups
Individual ID 0.86 156 Individuals 0.64 162 Individuals
Year <0.01 15 years <0.01 15 years

Final models contained all main effects
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separating these two types of helpers is difficult in this system,
given that some non-breeders may be individuals that have
attempted to breed, but failed to do so successfully. Co-breeding
also provides an additional benefit for helpers as they can share
reproduction and parental care with the dominants (and then
thus have ‘helpers’ themselves). In addition, previous studies
found that having a (co-breeding) helper is beneficial for the
dominant’s reproductive success35,40. Therefore, it seems likely
that both helpers and dominants benefit from each other, perhaps
especially when elderly dominants are suffering senescence.

The logic outlined above leads to the intriguing possibility that
elderly individuals might be able to use cooperative breeding as a
strategy to increase their lifespan and to maximize lifetime
reproductive success. We found some evidence that this might be
the case in the Seychelles warbler. Although we do not know the
actual mechanism, the likelihood that subordinates helped
increased with the age of the dominant female. This increase in
helper prevalence was explained by an age-dependent increase in
female (not male) helper prevalence, resulting in increasingly
female-biased helper sex ratios in territories with elderly domi-
nant females (from ca 60% in younger dominants to nearly 100%
in elderly dominants). We can only speculate why we only found
this relationship for dominant females, but a potential explana-
tion may be that dominant females benefit most from female
helpers because they invest more in reproduction. In turn, female
subordinates might have more incentive to stay and help by an
offer of a share in reproduction40. Although the likelihood that a
female subordinate reproduced appeared to be unrelated to the
age of the dominant female or male, future studies should test
whether co-breeding frequencies increase—and eviction rates, or
levels of aggression towards subordinates, decrease—among
elderly dominants in this species. A thorough examination of the
direct and indirect benefits for dominant and subordinate group
members is required to test whether there may be positive rein-
forcement between dominants living longer because of the help of
subordinates, and subordinates being more likely to stay and help
when receiving more benefits when assisting elderly dominants.

In the longer term, helping-enabled improvements in the late-
life survival of dominants may drive the evolution of longer
lifespan in cooperative breeders, but this prediction remains to be
tested. Some comparative studies found no association between
longevity and cooperative breeding across bird species47,48 (but
see ref. 49). A possible explanation for this is that the impact of
receiving help on senescence might differ strongly between spe-
cies. This could occur if the strength and direction of this rela-
tionship depends on the species’ ecology or life-history strategy.
Another explanation that remains to be tested is that helping
delays actuarial senescence and leads to longer lifespans in the
receivers of help, but that the mean lifespan across the population
remains similar because helpers show accelerated senescence and
shorter lifespans. Furthermore, because the force of natural
selection is proportional to the number of individuals alive in a
given age class50, the small number of elderly dominants that
benefit from help (Fig. 1) means that selection on delayed
senescence may be relatively weak compared to factors that
improve fitness during early life. However, a positive effect of
helpers on the dominant’s fitness in late life should nonetheless
select for delayed senescence and longer lifespan in dominants,
and thus increased cooperative breeding.

Our results suggest that for elderly dominants, higher late-life
survival may be a key benefit of cooperative breeding. More
studies investigating how helping affects senescence at the indi-
vidual level are needed to test how the association between
cooperative breeding and senescence differs between the indivi-
dual and species level. We encourage future studies to investigate
how cooperation may delay senescence, how the prevalence of

cooperation may change with age, and whether cooperation and
delayed senescence may be self-reinforcing21,51–53, thus poten-
tially driving longer lifespans in social species.

Methods
The Seychelles warbler model system. The Seychelles warbler population on the
isolated island of Cousin (29 ha; 4°20’ S, 55°40’ E) contains ca 320 adult individuals,
nearly all of which are colour-banded (using a combination of three colour rings
and a British Trust for Ornithology metal ring)54. The warbler’s life history is
characterized by high annual adult survival (84%), mostly single-egg clutches, and
extended periods (up to three months) of post-fledging care24,32. Individuals that
have acquired a dominant breeding position generally defend the same territory,
with the same partner, until their death55. The correlation between the age of the
dominant male and female in a territory is, while significant, actually relatively
weak (Pearson product-moment correlation: r= 0.16, t1531=6.53, P < 0.001, Sup-
plementary Fig. 3). This is because the age at which an individual obtains a
dominant position varies considerably, pairs of birds do not become dominant at
the same age, and the age at which dominant individuals die (and one of the pair is
replaced) varies. Previous studies have shown that male and female dominants
have similar breeding tenure, annual survival probabilities and rates of actuarial
senescence24,25. The vast majority of breeding activity occurs in June–September
(hereafter: main breeding season), when food availability is highest (breeding
occurs in 94% of territories in this period)56. Seychelles warblers can breed suc-
cessfully in socially monogamous pairs, but, because of a lack of suitable breeding
opportunities, young individuals often delay independent breeding and become
subordinates within a territory, where they then may help with providing allo-
parental care (incubation (female subordinates only); provisioning (male and
female subordinates)), or not54. Subordinates are often retained offspring from
previous breeding attempts33, although a very small number of subordinates dis-
perse to a new subordinate position in a different territory57. Territory inheritance
in the Seychelles warbler is rare (only 3.7% of dominant breeding positions are
obtained via offspring inheriting this status on their natal territory58), so it is
unlikely that inheritance is the main benefit accrued by subordinates. Subordinates
benefit from helping as they obtain breeding experience59 and often gain indirect
(kin-selected) fitness benefits through helping related offspring46. Further, older
(≥2 year old) female subordinates often (ca 40% in any year) gain direct fitness
benefits through co-breeding (laying an egg in the same nest as the dominant
female)22,35. Co-breeding subordinates always provide alloparental care and do not
discriminate between their own or the dominant female’s offspring (i.e. they help
all offspring in the nest)46,60. Further, previous studies found no evidence for
reproductive conflict caused by co-breeding females35,40,61,62, except in extreme
cases32. Therefore, we considered all subordinates that helped with incubation or
provisioning as helpers, irrespective of whether they co-bred or not. Male sub-
ordinates acquire fewer benefits than females because they do not appear to benefit
through gaining breeding experience59 and very rarely gain direct paternity, which
may explain why most helpers (88%;36 77% (n= 310) in this study) are female35.
Apart from providing the opportunity to obtain indirect fitness benefits, the pro-
longed presence of the parents may be beneficial for subordinates because it
facilitates the eventual acquisition of a dominant position elsewhere. This is
because breeders are more likely to allow related subordinates to remain in the
territory until they are able to disperse to a dominant position elsewhere, but will
evict unrelated subordinates irrespective of such opportunities, resulting in higher
mortality33,63.

Data collection. For our analyses, we used data collected between 1995–2016,
when the population was most intensively studied. We excluded the years
2000–2002 because fieldwork was limited in this period, with incomplete data on
helping behaviour. In addition, we excluded 2004 because 58 individuals (both
dominants and subordinates) were translocated to another island just before the
main breeding season as part of a conservation programme64, and 2005 because no
territory quality data were collected in that year. During the main breeding season,
each territory was monitored to determine the identity, helper status and number
of group members and to assess breeding activity at least once every two weeks by
following the resident dominant female for at least 15 min55. As the resighting
probability for dominants during the main breeding season is virtually one65, and
migration is virtually non-existent23, it is safe to assume that dominants not seen
over an entire breeding season had died25. Once nest building commenced, each
breeding attempt was monitored every 3–4 days until the nestling(s) fledged or the
breeding attempt failed. To establish whether a subordinate provided nest care
(helper) or not (non-helping subordinate) in a given season, we conducted nest
watches of at least 60 min during both the incubation and nestling provisioning
stages and recorded the start and end times of all provisioning events and incu-
bation bouts and the identity of the individuals providing nest care34. For nests that
failed early in the breeding stage (i.e. before an incubation and/or provisioning nest
watch could be performed), subordinates were conservatively classified as non-
helping subordinates. As in the majority of the territory-years where helpers were
present (in 17% (271 out of 1571) of territory-years there was at least one helper
present in the territory) there was only one helper of either sex (86% one helper,
14% two helpers, <1% three helpers; n= 271), we treated helper presence as a
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binary variable (Y/N) in our analyses. Helper effects in cooperatively breeding
species might result from factors associated with having subordinates (which are
often retained offspring and thus indicate successful reproduction in previous
years), such as differences in individual or territory quality, rather than from
helping per se (see refs. 44,66). Separating the impact of helping from individual or
territory quality is extremely difficult, as experimentally manipulating the effect of
help is generally not feasible or fraught with methodological issues44. Because in
the Seychelles warbler not all subordinates help in any given year we can test
statistically whether helper effects are better explained by having subordinates (i.e.
living in a larger group), rather than by helping per se34.

Seychelles warblers are almost entirely insectivorous, so we used an index of
insect availability in each territory in each main breeding season as a proxy for
territory quality (following refs. 54,67). To calculate this, we used the formula
A �P Cx � Ixð Þ, where A is the size of the territory in ha, Cx is the amount of
foliage cover for tree species x, and Ix is the mean monthly insect density for tree
species x per unit leaf area in dm2. Territory size was determined from territory
maps constructed from detailed observational data of foraging and territorial
disputes. Foliage cover was determined by scoring the presence (i.e. >50% cover) or
absence (i.e. ≤50% cover) of the 10 dominant tree species at the following height
bands: 0–0.75 m, 0.75–2 m and each 2 m interval hereafter. This was done at 20
random points in each territory and the total number of presence scores, for each
tree species, was our estimate of foliage cover. Insect densities were estimated by
counting the number of insects on the undersides of 50 leaves for each of the 10
dominant tree species present at 14 different locations spread across the island.
Insect counts taken at each location were used as an estimate for all territories near
that location.

Statistical analyses. All models were performed separately for female and male
dominants. Continuous predictor variables were centred and divided by two
standard deviations to facilitate interpretation and comparison of model coeffi-
cients68. Non-significant (P > 0.05) interaction terms were removed, sequentially in
order of least significance, from the models and final models contained all main
effects and any significant interaction terms. We used R (version 3.2.5) for all
analyses.

Incubation attendance. To investigate how dominant females respond to addi-
tional incubation performed by female helpers, we quantified incubation atten-
dance for dominant females with and without female helpers. We predicted that
dominant females would reduce their incubation attendance in response to being
helped. For this, we used data on incubation behaviour that were collected between
2003 and 2015. For each nest, we calculated the dominant female’s incubation
attendance, which was the proportion of time the dominant female spent on
incubation. In addition, we established whether only the dominant female incu-
bated or whether there were additional incubators (helpers). We excluded all
incubation observations of nests where the start or end time of one or more
incubation bouts was unknown, because we were unable to calculate the incubation
attendance in such cases. For the same reason, we also excluded observations of
nests with female subordinates where the identity of the incubating individual
could not be established for one or more incubation bouts. When multiple
observations were performed at the same nest, only the first observation was
selected. This resulted in 346 nest observations of 192 dominant females in 12
years. As incubation attendance approximated a normal distribution, we performed
a linear mixed model (LMM) with Gaussian errors and an identity link function
using lme4 (version 1.1-1269) in R. In this model, incubation attendance was the
dependent variable and the fixed effects were log10 territory quality, the linear and
quadratic effects of age (hereafter: age and age2) of the dominant, helper presence
(Y/N), the number of subordinates, and the two-way interactions between helper
presence and the dominant’s age and between the number of subordinates and the
dominant’s age. Dominant female identity and year were included as random
effects. Subsequently, we repeated this analysis with the total incubation attendance
by all incubating females (instead of the dominant female’s incubation attendance)
as the dependent variable to test the prediction that incubation by helpers leads to
an increase in overall incubation attendance.

Helping and actuarial senescence. To investigate the impact of helping on age-
dependent survival of dominants, we performed Generalized Linear Mixed Models
(GLMMs) with a binomial error structure and a logit link function using the
package lme4. Survival was a binary response variable stating whether a dominant
survived until one year later than the season in which the breeding data were
gathered25. Individual identity (which controls for repeated sampling of dominants
and the territory they occupy throughout their breeding tenure29) and year (to
control for unmeasured annual variation) were included as random effects. Models
also included the following fixed effects: log10 territory quality, age and age2 of the
dominant, helper presence (Y/N), the number of subordinates, and the two-way
interactions between helper presence and the dominant’s age, and between the
number of subordinates and the dominant’s age. A significant interaction between
helper presence and the dominant’s age may suggest that helpers affect the pattern
of age-dependent survival in dominants. We first treated helper presence as a
binary variable (Y/N) in our analyses. Subsequently, as female helpers contribute

more to parental duties in the Seychelles warbler37 and therefore may have a larger
impact on the dominant’s survival, we investigated whether a model that included
the presence/absence of both female and male helpers separately explained the data
better (by comparing the AICc values of both models) than a model with helper
presence per se. The results of this model that included both male and female
helper presence are reported in Supplementary Table 2.

Furthermore, as the fit of a quadratic age model could be largely determined by
changes occurring during early-life, when the sample sizes are largest, this could
potentially lead to misleading inferences about changes occurring during late life70.
Therefore, we confirmed the late-life changes suggested by the models with a
quadratic effect of age by comparing, using two proportion z-tests, dominant
survival with and without helpers for dominants younger than seven years and for
dominants older than six years, where six years is the onset of reproductive
senescence in this species25,45.

Telomere attrition rate. We tested whether dominants that received help show
reduced telomere shortening using LMMs with a Gaussian error structure and an
identity link function. Each year during the main breeding season, ca 25% of the
adult population is caught using mist nets and blood samples are collected by
brachial venipuncture71,72. Following the procedures described in detail else-
where29–31, we used qPCR to measure relative telomere length (RTL; the con-
centration of telomeric DNA relative to the concentration of the single-copy gene
GAPDH) in blood samples collected from the same individual in two consecutive
years. As avian erythrocytes are nucleated, this measure is effectively the RTL of the
erythrocytes that comprise the great majority of blood cells. We then calculated
ΔRTL as the difference between RTL in year t and RTL in year t+ 1 (i.e. one year
later) within each individual and related ΔRTL to helper presence, with negative
values indicating telomere shortening and positive values lengthening31. As there
were only two ΔRTL measures available for female dominants with a male helper,
only one ΔRTL measure for male dominants with a male helper, and because
female helpers contribute more than male helpers do (see results), we focussed on
comparing ΔRTL in dominants with a female helper to dominants without. The
results of a model that included the presence of helpers (irrespective of the sex of
the helper) were similar and are reported in Supplementary Table 3. As ΔRTL
values may be greater in individuals with greater initial RTL (e.g. due to mea-
surement error or ‘regression to the mean’), we included an individual’s initial RTL
as a covariate to the models. Further, we included log10 territory quality, log10 age
of the dominant, a binary variable (offspring produced Y/N) stating whether off-
spring were born in the territory in year t that reached at least three months of age
(as a measure of reproductive investment) and the number of subordinates (irre-
spective of their helping status) as predictors and included individual identity, year
and birth year as random effects31.

To test if dominants with helpers had better initial condition than individuals
without helpers we compared RTL and the July (i.e. at the start of the breeding
season) body mass of dominants with and without helpers using LMMs. For the
models of telomere length, we included log10 of dominant age, log10 territory
quality, helper presence (Y/N) and the number of subordinates as predictors and
included individual identity, year and birth year as random effects. For the models
of early-season body mass, we included helper presence, age, age2, time of day
[morning (0600–1000 h), midday (1000–1400 h), afternoon (1400–1900h)],
log10 territory quality and tarsus length as predictors and included individual
identity and year as random effects71. There were no differences in telomere length
and July body mass between dominants that were helped or not (Supplementary
Table 5; Supplementary Table 6).

Age-dependent helper prevalence and subordinate reproduction. To test the
prediction that the probability that subordinates provide help increases among
elderly dominants, we constructed GLMMs with a binomial error structure and a
logit link function. Since the presence of helpers is conditional on subordinates
being present in the territory, we tested these predictions on a dataset containing
only dominants with one or more subordinates, with helping status of the sub-
ordinate (Y/N) as the dependent variable. First, we investigated the shape of the
relationship between helping status and the dominant’s age using generalized
additive mixed models in the R package gamm4 02-473. In these models, we fitted a
non-parametric smoothing parameter for a dominant’s age, which allows us to
evaluate potential non-linear relationships between helper presence and a domi-
nant’s age73. As these models indicated a linear relationship between helper pre-
sence and age, we continued fitting age as a linear predictor in GLMMs. Age of the
dominant, age of the subordinate (≤1 year old vs. ≥2 years old), sex of the sub-
ordinate, log10 territory quality and the number of subordinates in the territory
were included as predictors. Dominant identity, family group, and year were
included as random effects. We included an interaction between sex of the sub-
ordinate and the dominant’s age to test whether the association between the
dominant’s age and the subordinate’s likelihood of helping differed between male
and female subordinates. To check if selective disappearance of poor-quality
individuals could explain the age-dependent change in helping status, we added
longevity of the dominant to the model (i.e. including only individuals that have
died within our study period)74. As we found no evidence for selective dis-
appearance effects (Supplementary Table 7), we report the results from the simpler
models. Subsequently, we used a subset of the dataset containing only dominants
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with helpers and tested whether the sex ratio among helpers changed with the age
of the dominants. The sex of the subordinate was the dependent variable, age of the
dominant, age of the subordinate, log10 territory quality, and the number of
subordinates in the territory were included as fixed effects and dominant identity,
family group, and year were included as random effects.

To test how the likelihood that subordinate females reproduced (co-breeding)
was related to the age of the dominants, we constructed GLMMs with a binomial
error structure and a logit link function. We used genetic parentage analyses based
on 30 microsatellites using Masterbayes 2.52 to assign captured and genotyped
offspring to subordinate females75,76. It should be noted that this is an
underestimation of the total number of offspring that is produced as some
offspring die before they can be captured and because we excluded offspring for
which the genetic parents could not be assigned with at least 80% confidence76.
Whether a subordinate female reproduced or not (Y/N) was the dependent variable
and age of the dominant, age of the subordinate (≤1 year old vs. ≥2 years old), sex
of the subordinate, log10 territory quality and the number of subordinates in the
territory were included as predictors. Dominant identity, family group and year
were included as random effects.

Ethics statement. The work was conducted with the permission of the Seychelles
Bureau of Standards and the Seychelles Ministry of Environment, Energy and
Climate Change and complied with all local ethical guidelines and regulations.
Nature Seychelles provided permission to work on Cousin Island.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available in figshare with the identifier
https://doi.org/10.6084/m9.figshare.7751099.
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