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Figure 1: geomorph logo (by E. Sherratt)

1 Getting Started

1.1 What is geomorph?

geomorph is a freely available software package for geometric morphometric analyses of two- and three-
dimensional landmark (shape) data in the R statistical computing environment. It can be installed from the
Comprehensive R Archive Network, CRAN http://cran.r-project.org/web/packages/geomorph/. Occasionally,
we make updates between uploads to CRAN. Users can install via GitHub the current beta version from
https://github.com/geomorphR/geomorph.

How to cite: When using geomorph in publications, please cite the software with version

citation(package="geomorph")

To cite package 'geomorph' in a publication use:

Adams, D. C., M. L. Collyer, A. Kaliontzopoulou, and E.
Sherratt. 2017. Geomorph: Software for geometric morphometric
analyses. R package version 3.0.5.
https://cran.r-project.org/package=geomorph.

A BibTeX entry for LaTeX users is

@Miscq{,
title = {Geomorph: Software for geometric morphometric analyses. R package version 3.0.5. https://c:
author = {D.C. Adams and M.L. Collyer and A. Kaliontzopoulou and E. Sherratt},
year = {2017},
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As geomorph is evolving quickly, you may want to cite also its
version number (found with 'library(help = geomorph)').

1.2 How to use this manual

This manual is not meant to be exhaustive — the benefit of working within the R environment is its flexibility
and infinite possibilities. Instead, the manual presents the functions in geomorph and how they can be
used together to perform analyses to address a variety of questions in Biology, Anthropology, Paleontology,
Archaeology, Medicine etc. This help guide is structured according to the pipeline outlined in Figure 2,
which is based on a general workflow for morphometric analysis.


http://cran.r-project.org/web/packages/geomorph/
https://github.com/geomorphR/geomorph

In chapter 2, we go over how to import data files of (raw) landmark coordinates digitized elsewhere, e.g.,
using software such as ImagelJ or tpsDig for 2D data, or IDAV Landmark editor, AMIRA, Microscribe for 3D
data (note that data collection — digitizing landmarks — can also be done in geomorph, and is outlined in
chapter 13). Then chapter 3 we demonstrate some techniques and functions for preparing and manipulating
imported datasets, such as adding grouping variables and estimating missing data, and adjusting articulated
datasets (2D only). Note that some functions described in this section can also be used on Procrustes
coordinate data, but are presented here because they are important steps to learn familiarize the user with the
R environment. In chapter 4 the raw data are taken through the morphometric-specific step of alignment
using a generalized Procrustes superimposition, which is imperative for raw coordinate data. In chapters
5-8, the statistical analysis functions are presented in order by type of analysis (Table 1). In chapters
9-13, we describe how to plot and visualize the data analysis results, including shape deformation graphs and
ordination plots (e.g., PCA). In chapter 14 the functions that can be used to generate coordinate data from
2D images and 3D surface files (i.e., an ASCII .ply) are discussed. In chapter 15 there are some frequently
asked questions and their solutions, and chapter 15 gives references listed in this guide.

Outside of R In geomorph and R
Data Collection Data Collection

(Digitizing) (Digitizing)

Data
Preparation

Generalized
Procrustes
Analysis

Aligned .
(Procrustes) Data Analysis
coordinate data

Visualization

Figure 2: Overview of the morphometric analysis process. In blue are the steps performed in R and geomorph,
and those in orange are done outside of R and imported into R



Table 1 Functions in geomorph.

Input Preparation Analysis
read.morphologika  arrayspecs advanced.procD.lm
readland.nts coords.subset bilat.symmetry
readland.tps define.links compare.evol.rates
readmulti.nts define.modules compare.multi.evol.rates
estimate.missing compare.pls
findMeanSpec globallntegration
fixed.angle gpagen
geomorph.data.frame integration.test
mshape modularity.test
two.d.array morphol.disparity
writeland.tps nested.update
phylo.pls
physignal
procD.Ilm
procD.PGLS
trajectory.analysis
two.b.pls
Visualization Dataset Digitizing
gridPar hummingbirds buildtemplate
plotAllSpecimens larval Tails define.sliders
plotGMPhyloMorphoSpace larvalMorph digit.curves
plotOutliers mosquito digit.fixed
plotRefToTarget motionpaths digitize2d
plotspec plethodon digitsurface
plotTangentSpace plethspecies editTemplate
shape.predictor plethShapeFood interlmkdist
warpRefMesh pupfish read.ply
warpRefOutline ratland
scallopPLY
scallops

Throughout this manual, we will use the following abbreviations as is conventional in morphometrics and R:
n number of specimens/individuals

p number of landmarks

k number of dimensions

# a comment, in R this is text that is ignored (not run)

... data not shown if in R output; other options allowed if in a function code code to be written into the R
console

[1] in a code example at the start of a line, a number in brackets denotes the first element of the output and
is not intended to be typed

Briefly understanding functions; below is a geomorph function annotated by color:

procD.allometry(f1, f2 = NULL, f3 = NULL, logsz = TRUE, iter = 999,
seed = NULL, alpha = 0.05, RRPP = TRUE, data = NULL)

readland.tps(file, specID = c("None", "ID", "imageID"), readcurves = FALSE,
warnmsg = TRUE) # # marks a comment; it is not code.



In dark blue, the function name and options. In black, an object, usually data, a formula of data, or sometimes
a file name. In green, a multipart option, requires choice of ONE of the presented values. In brown, a logical
option that requires a TRUE or FALSE input, or an option that requires a value. In blue, an option that
requires a numeric value. # in brown is a comment- this is ignored by R and used simply to tell you what
the code before or after it does.

Usually only the objects are necessary to run a function, as it will use the defaults for the options (which are
presented in the function as above, and under “usage” in the R help pages). Always read the help pages and
check the examples for usage. Order does not matter as long as the option is written in full, e.g., A= mydata.
But " " are important, e.g., method = "RegScore".

Progress bars are implemented in all analytically functions (print.progress = TRUE) and also warpRefMesh,
which is to help users for long-running analyses. In this manual, progress bars are not printed, for brevity.

1.3 Getting help beyond this manual

If you have questions or problems using geomorph, please post your questions to the geomorph forum:
https://groups.google.com/d /forum/geomorph-r-package.

Finally, I occasionally write source code for very specific issues to complement geomorph functions. They can
be found here: http://emsherratt.github.io/MorphometricSupportCode/.

1.4 Installing R and geomorph

To install R, download the latest version from https://www.r-project.org/. For Mac users: please also install
XQuartz from https://www.xquartz.org/. This allows the library(rgl) to function.

We suggest also installing RStudio https://www.rstudio.com/products/RStudio/#Desktop.

To install geomorph from CRAN
install.packages("geomorph", dependencies = TRUE)

This will install the latest version of geomorph from CRAN https://cran.rstudio.com/.

Alternatively, if you prefer menus:

Rapp: Packages & Data > Package Installer > Choose CRAN (binaries) from drop down menu, type
geomorph in box and click get list. Select geomorph, select install dependencies box, and click install selected.
or

Rstudio: Packages tab > Install: Install from CRAN repository > type geomorph in box and select install
dependencies box, and click install.

1.4.1 Installing from GitHub

CRAN restricts the number of updates package maintainers can make in a year. Occasionally, bugs slip
through that need to be fixed immediately. We maintain a “Stable” version of the current CRAN version of
geomorph in our GitHub repository, which can be installed as source.

To install the source package from GitHub:

install.packages("devtools", dependencies = TRUE)
devtools: :install_github("geomorphR/geomorph" ,ref = "Stable")


https://groups.google.com/d/forum/geomorph-r-package
http://emsherratt.github.io/MorphometricSupportCode/
https://www.r-project.org/
https://www.xquartz.org/
https://www.rstudio.com/products/RStudio/#Desktop
https://cran.rstudio.com/

1.4.2 Installing the beta version

We have a beta version for the upcoming version that contains the most current updates and new features.
These have not been fully tested so users do so at their own risk! It is held on a GitHub repository:

To install the beta geomorph package:
devtools: :install_github("geomorphR/geomorph",ref = "Develop")

1.4.2.1 Installing compilers for Mac users:

Previous versions of geomorph required users to have compilers installed in order to install packages from
source. This is no longer necessary from geomorph version 3.0. However the information is provided here if
any issues arise.

1) Go to the Mac App store and download Xcode Development Tools https://itunes.apple.com/au/app/
xcode/id4977998357mt=12 and follow install instructions. For 0S10.6, follow the instructions here http:
//kitcambridge.tumblr.com/post /17778742499 /installing- the-xcode-command-line-tools-on-snow.

2) Download the compilers. For OS10.8 and below: go to CRAN website here and download the GNU
Fortran compiler (gfortran-4.2.3.pkg) and follow install instructions. For 0S10.9 and above: Open
Terminal (Applications/Utilities) and type in:

curl -0 http://r.research.att.com/libs/gfortran-4.8.2-darwinl3.tar.bz2
This will download the installer. Then type
sudo tar fvxz gfortran-4.8.2-darwinl3.tar.bz2 -C /

This will install the compilers into the /usr/local/lib/ folder. The command sudo will ask for your password.
Type it in, but note it will not appear on the line. Press return. The terminal window will fill with all the
files being written. (This information is thanks to the The Coatless Professor HT'TP://r.research.att.com/
libs/gfortran-4.8.2-darwinl3.tar.bz2 sudo tar fvxz gfortran-4.8.2-darwinl3.tar.bz2 -C /).

3) Download and install XQuartz (X11) http://xquartz.macosforge.org/trac if it is not already on your
Magc. It will be installed in the Utilities folder. This program must be running every time you use
geomorph (required by rgl).

This is a short version of information available here http://cran.r-project.org/bin/macosx/tools/ and here
http://r.research.att.com/tools/.

1.4.2.2 Installing compilers for Windows users:

Go to the R website and download RTools http://cran.rstudio.com/bin/windows/Rtools. Make sure to
download the correct version! Follow the install instructions. You may need to modify the path (asked during
the installing). Try first without ticking the box on the install window. If running install_github above
does not work then re-install the RTools with the new path box ticked). Alternatively, use the function
find_rtools in devtools package.

For more information for Windows users, see here http://cran.r-project.org/doc/manuals/R-admin.html#
The-Windows-toolset.

1.4.3 Using geomorph

Regardless of how you install geomorph, in order to use it you must start every session by loading the package

library(geomorph)

Loading required package: rgl


https://itunes.apple.com/au/app/xcode/id497799835?mt=12
https://itunes.apple.com/au/app/xcode/id497799835?mt=12
http://kitcambridge.tumblr.com/post/17778742499/installing-the-xcode-command-line-tools-on-snow
http://kitcambridge.tumblr.com/post/17778742499/installing-the-xcode-command-line-tools-on-snow
HTTP://r.research.att.com/libs/gfortran-4.8.2-darwin13.tar.bz2
HTTP://r.research.att.com/libs/gfortran-4.8.2-darwin13.tar.bz2
http://xquartz.macosforge.org/trac
http://cran.r-project.org/bin/macosx/tools/
http://r.research.att.com/tools/
http://cran.rstudio.com/bin/windows/Rtools
http://cran.r-project.org/doc/manuals/R-admin.html#The-Windows-toolset
http://cran.r-project.org/doc/manuals/R-admin.html#The-Windows-toolset

Loading required package: ape

You'll notice that a black warning message is printed in the console saying the package rgl and ape are also
loaded. All of the 3D plots of interactive functions of geomorph are run through rgl https://cran.r-project.
org/web /packages/rgl/index.html. ape is called for several phylogenetic analyses.


https://cran.r-project.org/web/packages/rgl/index.html
https://cran.r-project.org/web/packages/rgl/index.html

1.5 Workflows for common analyses

Below are some pathways to perform common analyses in geomorph. This is not an exhaustive list, but
provides a reference for users familiar with other morphometric software to navigate the functions. In red the
type of question or analysis is presented, and in blue the specific geomorph functions in sequence.

Principal Components Allometry and Group Comparison e

Analysis (PCA R i MANOVA
el | ) egression signal, tempo and mode

Read data +

Read in raw coordinate Read data Read data Read data .
ree

data

Generalized Procrustes gpagen gpagen gpagen gpagen

Analysis

plotTangentSpace procD.Im procD.Im plotGMPhyloMorphospace

Analyses —
procD.allometry physignal
—
i i compare.evol.rates /
Visualize shape plotRefToTarget plotRefToTarget plotRefToTarget G R
deformations

Morphological Integration Modularity

covariation shape with .
(covari slhape)p - (evaluate hypothesis)

Evaluate phylogenetic

Covariation shape with
least squares model

multivariate continuous data

Read in rzv;tc;oordinate Read data Read data Read data
Read data +
Tree
Generah::;;n;zcrustes gpagen gpagen gpagen
gpagen
—
two.b.pls define.modules
procD.pgls
Analyses
modularity.test
—
Vlc?:glrzn?a?it:)ize plotRefToTarget plotRefToTarget plotRefToTarget

Figure 3: Example workflows in geomorph of morphometric analyses

1.6 Example datasets in geomorph

For chapters II through IV, many of the examples will be using data included with geomorph. There
are 12 datasets: plethodon, scallops, hummingbirds, larvalTails, larvalMorph, mosquito, ratland,
plethspecies, plethShapeFood, pupfish, motionpaths and scallopPLY. It is advised to run and examine



these example datasets before performing own analyses in order to understand how a function and its options
work.
To load an example dataset:

data(plethodon)
attributes(plethodon)

$names
[1] "land" "links"  "species" "site" "outline"

head(plethodon$landl[,,1])

[,1] [,2]
[1,] 8.89372 53.77644
[2,] 9.26840 52.77072
[3,] 5.56104 54.21028
[4,] 1.87340 52.75100
[5,] 1.28180 53.18484
[6,] 1.24236 53.32288

head(plethodon$links)

(.11 [,2]
[1,] 4 5
[2,1] 3 5
[3,] 2 4
(4,1 1 2
[5,1] 1 3
[6,] 6 7
plethodon$species

[1] Jord Jord Jord Jord Jord Jord Jord Jord Jord Jord Teyah
[12] Teyah Teyah Teyah Teyah Teyah Teyah Teyah Teyah Teyah Jord Jord
[23] Jord Jord Jord Jord Jord Jord Jord Jord Teyah Teyah Teyah
[34] Teyah Teyah Teyah Teyah Teyah Teyah Teyah
Levels: Jord Teyah

plethodon$site

[1] Symp Symp Symp Symp Symp Symp Symp Symp Symp Symp Symp Symp Symp Symp
[156] Symp Symp Symp Symp Symp Symp Allo Allo Allo Allo Allo Allo Allo Allo
[29] Allo Allo Allo Allo Allo Allo Allo Allo Allo Allo Allo Allo
Levels: Allo Symp

head (plethodon$outline)

[,1] [,2]
[1,] 0.3986487 -0.2022766
[2,] 0.4000364 -0.2022312
[3,] 0.4014240 -0.2021857
[4,] 0.4028116 -0.2021400
[5,] 0.4041990 -0.2020943
[6,] 0.4055864 -0.2020484

The dataset above, plethodon, is a 1list containing several components: the coordinate data
(plethodon$land), two sets of grouping variables as factors (plethodon$species, plethodon$site),
the wirelink addresses (plethodon$links), and an matrix of outline coordinates for visualizations
(plethodon$outline).
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class(plethodon$site)

[1] "factor"
class(plethodon$land)

[1] "array"
class(plethodon$links)

[1] "matrix"

Note that your own data will not necessary be a list - depending on how you read in each element of your
data to R. However, learning how to manipulate the example datasets here will give you practice for working
with lists later on.

Many of the novice user problems when using geomorph and R stem from having the object input in the
wrong format. Here are some useful base functions in R to help understand formatting of one’s data:

class() # Object Classes

attributes() # Object Attribute Lists

dim() # Dimensions of an Object

nrow() ; mncol() # The Number of Rows/Columns of a 2D array
dimnames() # Dimnames of an Object

names() # The Names of an Object

rownames() ; colnames() # Row and Column Names

is.numeric() # wvery useful to know if the data are numeric

geomorph primarily has data stored in a 2D array or 3D array (matrix and array respectively) (see below
and section 2.1), grouping variables are vectors and factors, and outputs of functions may be lists. For more
information about the object classes in R see http://www.statmethods.net/input/datatypes.html

1.6.1 Data arrays

Landmark data in geomorph can be found as objects in two formats: a 2D array (matrix; Figure 4A) or a 3D
array (Figure 4B). These data formats follow the convention in other morphometric packages (e.g., shapes,
Morpho) and in J.Claude’s book Morphometrics in R (2008), and help to distinguish Shape Variables from
other continuous morphometric data (linear measurements).

1.6.1.1 3D array (p x k x n)

An array with three dimensions, i.e., number of rows (p), number of columns (k) and number of “sheets” (n).
Imagine a 3D array like a stack of filing cards. Data in this format are needed for most geomorph analysis func-
tions. If one has inputted data using readland.nts, readmulti.nts, readland.tps, read.morphologika,
then the data will be a 3D array object (unless the morphologika file contains other information, such as
labels and groups, in which case the 3D array will be stored within the returned list as $coords). Check by

typing
dim(plethodon$land)
[1] 12 2 40

If dim gives three numbers, it is a 3D array. Here mydata has p=12, k=2, n=40. If dim gives two numbers, it
is a 2D array (a matrix). If dim returns NULL, they use class to determine what the format of the object is.

Understanding how to index the 3D array

11
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Figure 4: 2D array and 3D array of landmark coordinate data. NOTE: This example shows 3D landmark
coordinate data, but the same format would be used for 2D coordinate data.

dim(plethodon$land)

[11 12 2 40

# To access the first specimen (or any specimen by number)
plethodon$landl, , 1]

[,1] [,2]
[1,] 8.89372 53.77644
[2,] 9.26840 52.77072
[3,] 5.56104 54.21028
[4,] 1.87340 52.75100
[5,] 1.28180 53.18484
[6,] 1.24236 53.32288
[7,] 0.84796 54.70328
[8,] 3.35240 55.76816
[9,] 6.29068 55.70900
[10,]1 8.87400 55.25544

[11,] 10.74740 55.43292
[12,] 14.39560 52.75100

# To look at cordinates of landmarks 2 & 3 of specimen 1
plethodon$land[c(2:3),,1]

[,1] [,2]
[1,] 9.26840 52.77072
[2,] 5.56104 54.21028

# To look at the = coordinates of all landmarks of specimen 1
plethodon$land[,1,1]

[1] 8.89372 9.26840 5.56104 1.87340 1.28180 1.24236 0.84796
[8] 3.35240 6.29068 8.87400 10.74740 14.39560

1.6.1.2 2D array (n x [p x k])

An array (matrix) with two dimensions, i.e., number of rows (n) and number of columns (p*k).

12



dim(two.d.array(plethodon$land))

[1] 40 24

The 2D array is most commonly the format for other variables (n x variables), such as interlandmark distances.

1.6.2 geomorph data frame

A data frame in R is usually used for storing tables data tables. In geomorph a geomorph.data.frame
is a special list that contains all data to be used in your analyses. The purpose is similar to the base
R function, data.frame, but without the constraint that data must conform to an n (observations) x p
(variables) matrix. Rather, the list produced is constrained only by n. List objects can be Procrustes residuals
(coordinates) arrays, matrices, variables, distance matrices, and phylogenetic trees. Results from gpagen can
be directly imported into a geomorph.data.frame to utilize the coordinates and centroid size as variables.
The geomorph.data.frame is of particular importance when using the functions: procD.1m, procD.pgls,
advanced.procD.1m, morphol.disparity, procD.allometry, trajectory.analysis.

data(plethodon)

Y.gpa <- gpagen(plethodon$land,PrinAxes=FALSE, print.progress = FALSE)
# make a geomorph dataframe from the output

gdf <- geomorph.data.frame(Y.gpa)

# here Y.gpa is a list containing coords and Csize,

# which ©s coreced into a geomorph dataframe

attributes(gdf)

$names
[1] "coords" "Csize"

$class
[1] "geomorph.data.frame"

gdf <- geomorph.data.frame(Y.gpa, species = plethodon$species, site = plethodon$site)
attributes(gdf)

$names

[1] "coords" "Csize"  '"species" "

site"

$class
[1] "geomorph.data.frame"

As with a regular R dataframe used in functions like 1m, the dataframe is used where a geomorph function
has the option data=. And the parts of the geomorph dataframe are called by name, e.g.: procD.1lm(coords
~ Csize + species * site, data = gdf)

1.7 Permutation tests

Many of the function in geomorph test for statistical significance using a permutation procedure (e.g., Good
2000). A randomization test takes the original data, shuffles and resamples, calculates the test statistic and
compares this to the original. This is repeated for a number of iterations, creating a distribution of random
tests statistics in which the original can be evaluated. The proportion of random samples that provide a
better fit to the data than the original provides the P-value. Therefore the number of decimal places for the
P-value is correlated to the number of iterations. When deciding how many iterations to use more is better.
However there is a point where it is time consuming and not helpful (Adams and Anthony 1996). The default
in geomorph is 999, up to 10,000 is reasonable. The examples in this manual and on the package help files
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are usually very low to make them fast to run, and it is not recommended to run the function at these small
iterations for one’s own data.

In several functions (e.g., procD.1lm, procD.gls, advanced.procD.lm, procD.allometry), two possible
resampling procedures are provided. First, if RRPP=FALSE, the rows of the matrix of shape variables are
randomized relative to the design matrix. This is analogous to a ‘full’ randomization. Second, if RRPP=TRUE,
a residual randomization permutation procedure is utilized (Collyer et al. 2014). Here, residual shape values
from a reduced model are obtained, and are randomized with respect to the linear model under consideration.
These are then added to predicted values from the remaining effects to obtain pseudo-values from which SS
are calculated. NOTE: for single-factor designs, the two approaches are identical. However, when evaluating
factorial models it has been shown that RRPP attains higher statistical power and thus has greater ability to
identify patterns in data should they be present (see Anderson and terBraak 2003).

1.8 Statistical Designs

For functions requiring a linear model formula, £1, the following is a guide for different models:

An expression of the form y ~ model is interpreted as a specification that the response y is modelled by a
linear predictor specified symbolically by model (examples in the table below; not an exhaustive list! y is
used to denote a single dependant variable, and Y is a matrix for multiple dependant variables). In geometric
morphometrics with shape data, the x,y (and z) coordinates of all the landmarks are treated together as Y.

—
=

Common designs

Simple Linear Regression
Single-factor ANOVA
Multivariate Regression
Single-factor MANOVA
Single-factor MANCOVA
Multiple-factor MANOVA
Factorial MANOVA
Nested MANOVA

KRR KR K<Y <
2
PP X P X PN

N e
o o T M

NOTE: * denotes interaction. Suggested reading: http://www.statmethods.net/stats/anova.html

Type I and IT Sums of Squares (SS): For models that have 3 or more factors the option int.first =
TRUE/FALSE is important. TRUE adds the interactions of first main effects before the subsequent main effects
(Type I, a.k.a “sequential” SS). FALSE adds them in order (Type II SS), for example, the model: shape -~
axbxc

int.first = FALSE : shape ~a + b + ¢ + a:b + a:c + b:c + a:b:c

int.first = TRUE : shape ~a + b + a:tb + ¢ + a:c + b:c + a:b:c

For one or two factors, this is inconsequential and thus int.first can be left at default.

Finally, this manual only covers geomorph functions. It is recommended that users look to some “getting
started with R” resources, such as Quick-R, and the R Introduction manual, and various Springer eBooks
in the series ‘Use R!’ Also highly recommended is J. Claude’s book Morphometric with R (2008).
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2 Data Input: Importing landmark data

Landmark data brought into R can be in a variety of formats. Our functions can deal with the most common:
tps files, nts files, and morphologicka files. The following section describes how to use these functions on
these files. At the end, we describe how data brought in as a simple excel-style matrix can be imported and
manipluated into the correct format.

All of these functions return a 3D array (see section Data Preparation: Data arrays for details) which is the
preferred data format for landmark data. ## TPS files (readland.tps) Function

readland.tps(file, specID = c("None", "ID", "imageID"), readcurves = FALSE, warnmsg = TRUE)

Arguments

* file A .tps file containing two- or three-dimensional landmark data

* specID a character specifying whether to extract the specimen ID names from the ID or IMAGE lines
(default is “None”)

* readcurves A logical value stating whether CURVES= field and associated coordinate data will be read as
semilandmarks (TRUE) or ignored (FALSE)

* warnmsg A logical value stating whether warnings should be printed

This function reads a .tps file containing two- or three-dimensional landmark coordinates for a set of specimens.
Tps files are text files in one of the standard formats for geometric morphometrics (see Rohlf 2010). Two-
dimensional landmarks coordinates are designated by the identifier “LM=", while three-dimensional data are
designated by “LM3=". Landmark coordinates are multiplied by their scale factor if this is provided for all
specimens. If one or more specimens are missing the scale factor (there is no line “SCALE="), landmarks are
treated in their original units.

The name of the specimen can be given in the tps file by “ID=" (use specID="ID"”) or “IMAGE=" (use
specID= “imagelD”), otherwise the function defaults to specID= “None”.

If there are curves defined in the file (i.e., CURVES= fields), the option readcurves should be used. When
readcurves = TRUE, the coordinate data for the curves will be returned as semilandmarks and will be
appended to the fixed landmark data. Then the user needs to use define.sliders to create a matrix designating
how the curve points will slide (used by ‘curves=’ in gpagen). When readcurves = FALSE, only the landmark
data are returned (the curves are ignored).

At present, all other information that can be contained in tps files (comments, variables, radii, etc.) is ignored.
E.g. a text file called “ratland.tps” in the .tps format:

ratland.tps

LM=8

-0.45 -0.475
-0.59 -0.28
-0.515 -0.12
-0.33 0

00

0.145 -0.395
-0.045 -0.42
-0.26 -0.465

ID = specimenl1O03N

LM=8

To read into R:

mydata <- readland.tps('"ratland.tps", specID = "ID")
[1] "Not all specimens have scale. Using scale = 1.0"
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mydatal[
(1,1 -0
(2,1 -0
(3,1 -0
(4,1 -0
(5,1 0
6,1 o.
(7,1 -0
(8,1 -0

, 1]

[,1]

.450 -0
.590 -0.
.515 -0.
.330 0.
.000 0.
145 -0.
.045 -0
.260 -0

[,2]
.475
280
120
000
000
395
.420
.465

# This 1s the coordinates for first specimen in file

In this case, because there is no scale given in the tps file, the command simply warns that the data are
treated in their original units. The function returns a 3D array containing the coordinate data, and if provided
in the file, the names of the specimens (dimnames(mydata)[[3]]).

2.1 NTS files (readland.nts)

Function

readland.nts(file)

Arguments

e file A .nts file containing two- or three-dimensional landmark data for a set of specimens

Function reads a single .nts file containing a matrix of two- or three-dimensional landmark coordinates for
a set of specimens. NTS files are text files in one of the standard formats for geometric morphometrics
(see Rohlf 2012). The parameter line contains 5 or 6 elements, and must begin with a “1” to designate a
rectangular matrix. The second and third values designate how many specimens (n) and how many total
variables (p x k) are in the data matrix. The fourth value is a “0” if the data matrix is complete and a “1” if
there are missing values. If missing values are present, the ‘1’ is followed by the arbitrary numeric code used
to represent missing values (e.g., -999). These values will be replaced with “NA” in the output array. The
final value of the parameter line denotes the dimensionality of the landmarks (2,3) and begins with “DIM=".
If specimen and variable labels are included, these are designated placing an “L” immediately following the
specimen or variable values in the parameter file. The labels then precede the data matrix. Here there are n
= 44 and p*k = 50 (25 2D landmarks). E.g. For a file that looks like:

rats.nts

" rats data,

1 164 16 0 dim=2

-0.450
-0.530
-0.560
-0.590
-0.650

-0.475 -0.590 -0.280
-0.555
-0.570
-0.580
-0.580

-0.685 -0.320
-0.700 -0.335
-0.745 -0.355
-0.800 -0.340

164 rats, 8 landmarks

-0.515
-0.625
-0.670
-0.700
-0.715

in

2 dimensions

.120 -0.330 0 0 0 0.145
.120 -0.400 0 0 0 0.230
.120 -0.425 0 0 0 0.300
.100 -0.435 0 0 0 0.330
.090 -0.450 0 0 0 0.360

Here, the 2D coordinate data are given for each specimen (each line)

To read into R:

mydata <- readland.nts('"rats.nts")
mydata[, > 1]

[,1]

[,2]

16

-0.395 -0.045 -0.420 -0.260 -0.465
-0.425 -0.005 -0.480 -0.265 -0.525
-0.440 0.015 -0.495 -0.270 -0.540
-0.445 0.030 -0.505 -0.285 -0.565
-0.445 0.040 -0.515 -0.300 -0.580



[1,] -0.450 -0.475
[2,] -0.590 -0.280
[3,] -0.515 -0.120
[4,] -0.330 0.000

mydatal, ,2]

[,1] [,2]
[1,] -0.530 -0.555
[2,] -0.685 -0.320
[3,] -0.625 -0.120
[4,] -0.400 0.000

The function returns a 3D array containing the coordinate data, and if provided in the file, the names of the
specimens, which can be accessed by: dimnames (mydata) [[3]]

Function is for .nts file containing landmark coordinates for multiple specimens. Note that .dta files in the
nts format written by Landmark Editor http://graphics.idav.ucdavis.edu/research/projects/EvoMorph, and
* nts files written by Stratovan Checkpoint http://www.stratovan.com/ have incorrect header notation; every
header is 1 n p-x-k 1 9999 Dim=3, rather than 1 n p-x-k 0 Dim=3, which denotes that missing data is in the
file even when it is not. NAs will be introduced unless the header is manually altered.

2.2 Multiple NTS files of single specimens (readmulti.nts)

Function
readmulti.nts(filelist)

Arguments
e filelist A vector of names of .nts files containing two- or three-dimensional landmark data

This function reads a list containing the names of multiple .nts files, where each .nts file contains the landmark
coordinates for a single specimen, e.g. made by digit.fixed or digitsurface.

For these files, the number of variables (columns) of the data matrix will equal the number of dimensions of
the landmark data (k = 2 or 3). The parameter line contains 5 or 6 elements, and must begin with a “1” to
designate a rectangular matrix. The second and third values designate the number of landmarks (p) and the
dimensionality of the data (k) in the data matrix. The fourth value is a “0” if the data matrix is complete
and a “1” if there are missing values. If missing values are present, the ‘1’ is followed by the arbitrary numeric
code used to represent missing values (e.g., -999). These values will be replaced with “NA” in the output
array. The final value of the parameter line denotes the dimensionality of the landmarks (2,3) and begins
with “DIM=". The specimen label is extracted from the file name, not the header. Here is an example of 3
.nts files, each p = 166, k = 3. These are then read and concatenated into a single 3D array for all specimens.

filelist <- list.files(pattern = ".nts")
filelist
[1] "ballOiL.nts" "ballO2L.nts" "ballO3L.nts"

What the nts file looks like:

ballO1L.nts

1 166 3 0 dim=3

37.366242091765 -19.7782715772904 -1.45757328357893

45.336342091765 -15.9657715772904 -4.28288328357893
45.562042091765 -1.20527157729041 -5.17616328357893
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47.607342091765 13.3546284227096 -6.41333328357893
39.940142091765 18.5793284227096 -4.27434328357893
-44.504657908235 0.138928422709595 -5.40957328357893
-2.61418790823501 47.4933284227096 -3.09240328357893
-8.00038890823501 -45.0109715772904 2.45829671642107
30.500142091765 35.9411284227096 -2.80191328357893

To read into R:

mydata <- readmulti.nts(filelist)
mydata
, , ballO1L

[,1] [,2] [,3]
[1,] 37.3662421 -19.77827158 -1.45757328
[2,] 45.3363421 -15.96577158 -4.28288328
[3,] 45.5620421 -1.20527158 -5.17616328
[4,] 47.6073421 13.35462842 -6.41333328
[5,] 39.9401421 18.57932842 -4.27434328

The function returns a 3D array containing the coordinate data, and the names of the specimens (dim-
names(mydata)[[3]]) extracted from the file names.

2.3 Morphologika files (read.morphologika)

Function

read.morphologika(file)

Arguments
e file A .txt file containing two- or three-dimensional landmark data for a set of specimens

This function reads a .txt file in the Morphologika format containing two- or three-dimensional landmark
coordinates. Morphologika files are text files in one of the standard formats for geometric morphometrics (see
O’Higgins and Jones 1998), see http://sites.google.com /site/hymsfme/resources. If the headers “[labels]” ,
“[labelvalues]” and “[groups]” are present in the file, then a data matrix containing all individual specimen
information is returned. If the header “[wireframe]” is present, then a matrix of the landmark addresses for
the wireframe is returned. If the header “[polygon]” is present, then a matrix of the landmark addresses for
the polygon wireframe is returned.

The file looks like:

morphologikaexample.txt
[individuals]
15
[landmarks]
31
[Dimensions]
3

[names]
Specimen 1
Specimen 2
Specimen 3
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Specimen 15
[labels]

Sex

[labelvalues]
Female

Female

Female

[rawpoints]

"#1

16.01 24.17 11.18
15 24.86 11.16
14.96 25.54 11.52
16.26 24.36 11.48
156.89 26.61 11.83
17.16 25.33 12.35
18.22 23.65 11.12

To read into R:

mydata <- read.morphologika("morphologikaexample.txt")
mydata$coords([,,1]
(11 [,21 [,3]
[1,] 16.01 24.17 11.18
[2,] 15.00 24.86 11.16
[3,] 14.96 25.54 11.52
[4,] 16.26 24.36 11.48
[5,] 15.89 26.61 11.83
[6,] 17.16 25.33 12.35

mydata$labels

Sex
Specimen 1 '"Female"
Specimen 2 "Female"
Specimen 3 "Female"
Specimen 4 '"Female"
Specimen 5 '"Male"
Specimen 6 '"Male"

The function returns a 3D array containing the coordinate data, and if provided, the names
of the specimens (dimnames(mydata)[[3]]). If other optional headers are present in the file
(e.g., “[labels]” or “[wireframe]”) function returns a list containing the 3D array of coordinates
(coords), andadatamatrizo fthedatafromlabels(labels) and/or the landmark addresses denoting the
wireframe ($wireframe) — which can be passed to plotRefToTarget option ‘links’.

To read multiple Morphologika files that each contain a single specimen, download this file (https://github.
com/EmSherratt/MorphometricSupportCode/blob/master /read.multi.morphologika.R) put in the working
directory then to use:

source("read.multi.morphologika.R")
filelist <- list.files(pattern = "*.txt") ## list all morpholgika files
mydata <- read.multi.morphologika("morphologikaexample.txt")
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2.4 Other text files

Base Functions: read.table(file) read.csv(file)

Using base read functions in R, one can read in data by many other ways. Here are two examples. These
examples use data arrangement function arrayspecs (see section 2.1 for details) and creates an object in the
same way as the previous functions. e.g. For a set of files (filel.txt, file2.txt, file3.txt...) each containing the
landmark coordinates of a single specimen like:

filel.txt

16.01 24.17 11.18
15 24.86 11.16
14.96 25.54 11.52
16.26 24.36 11.48
15.89 26.61 11.83
17.16 25.33 12.35
18.22 23.65 11.12

To read into R:

filelist <- list.files(pattern = ".txt") # makes a list of all .txzt files in working directory
names <- gsub (".txt", "", filelist) # extracts names of specimens from the file name
coords = NULL # make an empty object
for (i in 1:length(filelist)){
tmp <- as.matrix(read.table(filelist[i]))
coords <- rbind(coords, tmp)
b
coords <- arrayspecs(coords, p, k)
dimnames (coords) [[3]] <- names

e.g. For a single file containing the landmark coordinates of a set of specimens, where each row is a specimen,
and coordinate data arranged in columns x1, y1, x2, y2... etc., and the first column is the ID of the
specimens, e.g., from a data file exported from MorphoJ.

coordinatedata.txt

ID X1 Y1 X2 Y2 X3 Y3

specimenl 0.595 0.1679 0.2232 0.5028 1.292 0.4237 0.51
specimen2 0.0038 1.3925 0.7966 0.4132 0.1006 0.8483 ...
specimen3 0.6249 0.4515 0.3576 1.3262 0.9114 0.3611

mydata <- read.table("coordinatedata.txt" ,header=TRUE,row.names=1,

stringsAsFactors = FALSE)

# The stringsAsFactors = FALSE ts VERY important here

# Here row.names = 1 means "set the row names of the object to be the walues in column 1".

is.numeric(mydata)
[1] FALSE

Here R tells us the data are not numeric, even though we can see they are if we use View(mydata). Why?
Because if there are characters in the file, all elements are automatically read as characters not numerical data

The solution is to force those to be numeric with: as.matrix. For example, say we know the shape coordinates
are present in the file after two columns of non-shape coordinates (these could be centroid size, or a classifier),
then:
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coords <- as.matrix(mydatal,-(1:2)]) # here we say, use all columns except the first two.

is.numeric(shape)
[1] TRUE # now %t's numeric 2D array
coords <- arrayspecs(coords, p, k) # makes the matriz a 3D array

If the data file contains classifier variables, these can be extracted by subsetting columns. For example, if the
classifiers are in the first two columns, then:

classifiers <- mydatal ,1:2] # and if they are classifiers, they will probably need to be factors so:
classifiers <- factor(classifiers)
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3 Data Preparation: Manipulating landmark data and classifiers

3.1 Data arrays

Landmark data in geomorph can be found as objects in two formats: a 2D array (matrix) or a 3D array
(see chapter 1.5.1). These data formats follow the convention in other morphometric packages (e.g., shapes,
Morpho) and in J.Claude’s book Morphometrics in R (2008), and help to distinguish Shape Variables from
other continuous morphometric data (linear measurements).

3.2 Converting a 2D array into a 3D array (arrayspecs)

Function

arrayspecs(A, p, k)

Arguments

o A A 2D array (matrix) containing landmark coordinates for a set of specimens
e p Number of landmarks

o k Number of dimensions (2 or 3)

This function converts a matrix of landmark coordinates into a 3D array (p x k x n), which is the required
input format for many functions in geomorph. The input matrix can be arranged such that the coordinates of
each landmark are found on a separate row, or that each row contains all landmark coordinates for a single
specimen.

A <- arrayspecs(mydata, p, k) # where mydata is a 2D array
A[,,1] # look at just the first specimen

, , 1
[,1] [,2]

[1,] 8.89372 53.77644
[2,] 9.26840 52.77072
[3,] 5.56104 54.21028
[4,] 1.87340 52.75100
[5,] 1.28180 53.18484
[6,] 1.24236 53.32288
[7,] 0.84796 54.70328
[8,] 3.35240 55.76816
[9,] 6.29068 55.70900
[10,]1 8.87400 55.25544

[11,] 10.74740 55.43292
[12,] 14.39560 52.75100

3.3 Converting a 3D array into a 2D array (two.d.array)

Function

two.d.array(A)

Arguments

e A A 3D array containing landmark coordinates for a set of specimens
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This function converts a 3D array (p x k x n) of landmark coordinates into a 2D array (n x [p x k]). The latter
format of the shape data is useful for performing subsequent statistical analyses in R (e.g., PCA, MANOVA,
PLS, etc.). Row labels are preserved if included in the original array.

a <- two.d.array(mydata) # where mydata is a 3D array

a
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 8.893720 53.77644 9.268400 52.77072 5.561040 54.21028 1.873400 52.75100 1.281800 53.18484
[2,] 8.679762 54.57819 8.935628 53.83027 5.451914 54.65691 1.987882 52.68871 1.515514 53.02331
[3,] 9.805328 56.06903 10.137712 55.27961 6.647680 55.73664 3.448484 53.86698 3.012230 54.34478
[4,] 9.637164 58.03294 9.952104 56.77318 6.109836 57.94896 2.645496 55.89135 2.015616 56.62621

[5,] 11.035692 58.75009 11.335110 57.85184 8.255382 58.92119 4.555431 57.46687 3.956595 58.08709

3.4 Making a factor: group variables

Many analyses will require a grouping variable (a classifier) for the data. For small datasets, this can be
made easily within R:

group <- factor(c(0,0,1,0,0,1,1,0,0)) # specimens assigned in order to group 0 or 1

# assign specimen names from 3D array of data to the group classifier

names (group) <- dimnames (mydata) [[3]]

group
[1]1 001001100
Levels: 0 1

If the data have many specimens or many different groups, it may be easier to make a table in excel, save as
a .csv file and import using read.csv. classifier.csv

D Species Habitat
specimenl A.species dry
specimen A.notherspecies wet
specimen3 A.species dry
specimend A.species dry
specimens A.species wet
specimeng A.notherspecies wet
specimen? A.notherspecies wet
specimens A.notherspecies wet
specimend A.notherspecies dry

Figure 5: Example of a classifier matrix

classifier <- read.csv('"classifier.csv", header=T, row.names=1)
is.factor(classifier$Habitat) # check that it %s a factor

[1] TRUE

classifier$Habitat

[1] dry wet dry dry wet wet wet wet dry ...

Levels: dry wet

Note: When reading in a data file, R usually treats character variables as factors, but numeric variables
are not, and therefore must be coerced into factors. See ?factor for more information. ## Lists Another
common data structure in R is a list. In essence, a list is a generic vector containing other objects. In
geomorph, the example data are all lists. e.g. plethodon:

library(geomorph)
data(plethodon)
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attributes(plethodon)

$names
[1] "land" "links"  "species" "site" "outline"

Here, plethodon is made up of 5 named objects (which are each vectors, matrices/2D arrays or 3D arrays).
To access named objects within a list, use , suchasplethodonlinks. The returned output of many geomorph
functions is also in named list form. Parts of a list can also be accessed using numbers with double
square brackets [[]]. So in the above example. links is the 2nd object in the plethodon list, and so can
also be accessed by plethodon[[2]]. For more details on this, a good resource is the website R tutorial
(http://www.r-tutor.com/r-introduction/list).

3.5 Subest 3D array of landmark coordinates by a factor (coords.subset)

This function takes a factor and splits a set of landmark coordinates into subsets, as described by the factor.
The results is a list of separate sets of landmarks. See above for more information on lists.

Function

coords.subset (A, group)

Arguments
o A A 3D array (p x k x n) containing landmark coordinates for a set of specimens
e group A grouping factor of length n, for splitting the array into sub-arrays

To use the function, let’s use an example using pupfish dataset:

data(pupfish)
group <- factor(paste(pupfish$Pop, pupfish$Sex)) # make a 4 level factor
levels(group) # see the levels

## [1] "Marsh F" "Marsh M" "Sinkhole F" "Sinkhole M"
new.coords <- coords.subset(A = pupfish$coords, group = group)

names (new.coords) # see the list levels

## [1] "Marsh F" "Marsh M" "Sinkhole F" "Sinkhole M"

# access any element by:
# new.coords$ Marsh F* # Can be used in any analysis, just like pupfish$coords
# note " surrounds level name because it has a space in it

# group shape means
group.means <- lapply(new.coords, mshape)

3.6 Averaging 3D array of landmark coordinates by a factor
There is no geomorph function to do this, because one can easily do this with aggregate. See https:
//github.com/geomorphR/geomorph/wiki/Averaging-data-by-group for more details.

To use aggregate function, let’s use an example using pupfish dataset:

data(pupfish)
group <- factor(paste(pupfish$Pop, pupfish$Sex)) # make a 4 level factor
levels(group) # see the levels

## [1] "Marsh F" "Marsh M" "Sinkhole F" "Sinkhole M"
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new.coords <- coords.subset(A = pupfish$coords, group = group)

means <- (aggregate(two.d.array(pupfish$coords) ~ group, FUN=mean)) [,-1]
# function requires a 2D array format,

# also returns the group names in the first column so we omit that
rownames (means) <- levels(group)

means <- arrayspecs(means, 2, 56) # make a 3D array again

3.7 Estimating missing landmarks (estimate.missing)

All analysis and plotting functions in geomorph require a full complement of landmark coordinates. Either the
missing values are estimated, or subsequent analyses are performed on a subset dataset excluding specimens
with missing values. Below is the function to estimate missing data, followed by steps of how to just exclude
specimens with missing values.

Function
estimate.missing(A, method = c("TPS", "Reg"))

Arguments

o« A A 3D array (p x k x n) containing landmark coordinates for a set of specimens
o method Method for estimating missing landmark locations

The function estimates the locations of missing landmarks for incomplete specimens in a set of landmark
configurations, where missing landmarks in the incomplete specimens are designated by NA in place of the
x,y,z coordinates. Two distinct approaches are implemented.

1. The first approach (method="TPS") uses the thin-plate spline to interpolate landmarks on a reference
specimen to estimate the locations of missing landmarks on a target specimen. Here, a reference
specimen is obtained from the set of specimens for which all landmarks are present, Next, each
incomplete specimen is aligned to the reference using the set of landmarks common to both. Finally,
the thin-plate spline is used to estimate the locations of the missing landmarks in the target specimen
(Gunz et al. 2009).

2. The second approach (method=“Reg”) is multivariate regression. Here each landmark with missing
values is regressed on all other landmarks for the set of complete specimens, and the missing landmark
values are then predicted by this linear regression model. Because the number of variables can exceed
the number of specimens, the regression is implemented on scores along the first set of PLS axes for the
complete and incomplete blocks of landmarks (see Gunz et al. 2009).

One can also exploit bilateral symmetry to estimate the locations of missing landmarks. Several possibilities
exist for implementing this approach (see Gunz et al. 2009). Example R code for one implementation is
found in Claude (2008).

Missing landmarks in a target specimen are designated by NA in place of the x,y,z coordinates. To make this
so0:

any(is.na(mydata)) # check <if there are NAs in the data
FALSE # 2f false then,
mydata[which(mydata == -999)] <- NA # change missing values from "-999" to NAs

.nts files give a value in the header that is used to designate missing data (often 9999, -999 etc.). The
which(mydata == -999) searches for these values and replaces with NA.

To use the function, let’s use an example using Plethodon dataset:

data(plethodon)
plethland<-plethodon$land
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plethland[2,,2]<-plethland[6,,2]<-NA # create missing landmarks
plethland[2,,5]<-plethland[6,,5]<-NA # create missing landmarks
plethland[2,,10]<-NA # create missing landmarks
new.plethland <- estimate.missing(plethland,method="TPS")
new.plethland <- estimate.missing(plethland,method="Reg")

The function returns a 3D array with the missing landmarks estimated.

Instead of estimating missing, an alternative is to proceed with the specimens for which data are missing
excluded. For example to make a dataset of only the complete specimens (starting with the dataset as 2D
array), two ways are possible:

mydata
[,1] [,2] [,3] [,4]

[1,] 8.893720 53.77644 9.268400 52.77072
[2,] 8.679762 54.57819 8.935628 53.83027
[3,] 9.805328 56.06903 NA NA

[4,] 9.637164 58.03294 9.952104 56.77318
[5,] NA NA 11.335110 57.85184

[6,] 7.946625 55.71114 8.476400 54.82112
[7,] 8.849841 58.66961 9.396387 57.82877
[8,]1 9.331504 56.36904 10.154872 55.31344

newdata <- mydata[complete.cases(mydata),] # keep only specimens with complete data
# OR
newdata <- na.omit(mydata) # use only spectimens without NAs

newdata
[,1] [,2] [,3] [,4]
[1,] 8.893720 53.77644 9.268400 52.77072
[2,] 8.679762 54.57819 8.935628 53.83027
[3,] 9.637164 58.03294 9.952104 56.77318
[4,] 7.946625 55.71114 8.476400 54.82112
[6,] 8.849841 58.66961 9.396387 57.82877
[6,] 9.331504 56.36904 10.154872 55.31344

These functions can be used to make a dataset of only the landmarks in all specimens, by inputting the
matrix mydata in transpose, e.g., t (mydata). Note that these methods will re-label the specimen or landmark
numbers.

3.8 Rotate a subset of 2D landmarks to common articulation angle (fixed.angle)

A function for rotating a subset of landmarks so that the articulation angle between subsets is constant.
Presently, the function is only implemented for two-dimensional landmark data. Function

fixed.angle(A, art.pt = NULL, angle.pts = NULL, rot.pts = NULL,
angle = 0, degrees = FALSE)

Arguments

o« A A 3D array (p x k x n) containing landmark coordinates for a set of specimens
e art.pt A number specifying which landmark is the articulation point between the two landmark subsets

o angle.pts A vector containing numbers specifying which two points used to define the angle (one per
subset)
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e rot.pts A vector containing numbers specifying which landmarks are in the subset to be rotated

e angle An optional value specifying the additional amount by which the rotation should be augmented
(in radians)

e degrees A logical value specifying whether the additional rotation angle is expressed in degrees or
radians (radians is default)

This function standardizes the angle between two subsets of landmarks for a set of specimens. The approach
assumes a simple hinge-point articulation between the two subsets, and rotates all specimens such that the
angle between landmark subsets is equal across specimens (see Adams 1999). As a default, the mean angle is
used, though the user may specify an additional amount by which this may be augmented.

Example using Plethodon. Articulation point is landmark 1, rotate mandibular landmarks (2-5) relative to
cranium

data(plethspecies)

new.plethdata <- fixed.angle(plethspecies$land,
art.pt=1,
angle.pts=c(5,6),
rot.pts=c(2,3,4,5))

Function returns a 3D array containing the newly rotated data.
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Figure 6: The position of the mandible before running fixed.angle (left) and after (right)
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4 Generalized Procrustes Analysis

4.1 Generalized Procrustes Analysis (gpagen)

Generalized Procrustes Analysis (GPA: Gower 1975; Rohlf and Slice 1990) is the primary means by which
shape variables are obtained from landmark data (for a general overview of geometric morphometrics see
Bookstein 1991; Rohlf and Marcus 1993; Adams et al. 2004; Mitteroecker and Gunz 2009; Zelditch et al.
2012; Adams et al. 2013). GPA translates all specimens to the origin, scales them to unit-centroid size, and
optimally rotates them (using a least-squares criterion) until the coordinates of corresponding points align as
closely as possible. The resulting aligned Procrustes coordinates represent the shape of each specimen, and
are found in a curved space related to Kendall’s shape space (Kendall 1984). Typically, these are projected
into a linear tangent space yielding Kendall’s tangent space coordinates (Dryden and Mardia 1993; Rohlf
1999), which are used for subsequent multivariate analyses. Additionally, any semilandmarks on curves and
are slid along their tangent directions or tangent planes during the superimposition (see Bookstein 1997;
Gunz et al. 2005). Presently, two implementations are possible: 1) the locations of semilandmarks can be
optimized by minimizing the bending energy between the reference and target specimen (Bookstein 1997), or
by minimizing the Procrustes distance between the two (Rohlf 2010).

The first step in any geometric morphometric analysis is to perform a Procrustes superimpo-
sition of the raw coordinate data

Function

gpagen(A, curves = NULL, surfaces = NULL, PrinAxes = TRUE,
max.iter = NULL, ProcD = TRUE, Proj = TRUE, print.progress = TRUE)

Arguments

o A A 3D array (p x k x n) containing landmark coordinates for a set of specimens

e curves An optional matrix defining which landmarks should be treated as semilandmarks on boundary
curves, and which landmarks specify the tangent directions for their sliding (see define.sliders)

e surfaces An optional vector defining which landmarks should be treated as semilandmarks on surfaces

e PrinAzes A logical value indicating whether or not to align the shape data by principal axes

e max.iter The maximum number of GPA iterations to perform before superimposition is halted. The
final number of iterations could be larger than this, if curves or surface semilandmarks are involved

e ProcD A logical value indicating whether or not Procrustes distance should be used as the criterion for
optimizing the positions of semilandmarks

e Proj A logical value indicating whether or not the aligned Procrustes residuals should be projected into
tangent space
o print.progress A logical value to indicate whether a progress bar should be printed to the screen

The function performs a Generalized Procrustes Analysis (GPA) on two-dimensional or three-dimensional
landmark coordinates. The analysis can be performed on fixed landmark points, semilandmarks on curves,
semilandmarks on surfaces, or any combination. To include semilandmarks on curves, one must specify a
matrix defining which landmarks are to be treated as semilandmarks using the “curves=" option (this matrix
can be made using define.sliders). Likewise, to include semilandmarks on surfaces, one must specify a
vector listing which landmarks are to be treated as surface semilandmarks using the “surfaces=" option. The
ProcD=TRUE option will slide the semilandmarks along their tangent directions using the Procrustes distance
criterion, while ProcD=FALSE will slide the semilandmarks based on minimizing bending energy. The aligned
Procrustes residuals can be projected into tangent space using the Proj=TRUE option. NOTE: Large datasets
may exceed the memory limitations of R.
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4.1.1 Notes for geomorph 3.0

Compared to older versions of geomorph, users might notice subtle differences in Procrustes residuals when
using semilandmarks (curves or surfaces). This difference is a result of using recursive updates of the consensus
configuration with the sliding algorithms (minimized bending energy or Procrustes distances). (Previous
versions used a single consensus through the sliding algorithms.) Shape differences using the recursive updates
of the consensus configuration should be highly correlated with shape differences using a single consensus
during the sliding algorithm, but rotational “flutter” can be expected. This should have no qualitative effect
on inferential analyses using Procrustes residuals.

4.1.1.1 Using plot, print/summary on a gpagen object

The generic functions, print/summary, and plot all work with gpagen. The generic function, plot calls
plotAllSpecimens and plots the aligned landmarks of all specimens with the mean. print/summary provide
details of the GPA, including how many fixed and sliding semilandmarks are in the dataset, as well as how
many GPA iterations it took to converge. Use attributes to see the elements contained in the returned list
from gpagen.

4.1.2 Procrustes Superimposition of Fixed Landmarks only

As an example, we will use the 2D landmarks of the salamander head data set saved within geomorph.

data(plethodon) # Load the data
# See that all the specimens are in different coordinate systems
plotAllSpecimens(plethodon$land, mean=FALSE)
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Since all of the specimens were digitized from different images, when we plot the raw data we see the specimens
are all if different coordinate systems and thus are all over the place.

To perform GPA-alignment

plethodon.gpa <- gpagen(plethodon$land, print.progress = FALSE)
summary (plethodon.gpa)

Call:
gpagen(A = plethodon$land, print.progress = FALSE)

Generalized Procrustes Analysis
with Partial Procrustes Superimposition

12 fixed landmarks

0 semilandmarks (sliders)
2-dimensional landmarks

2 GPA iterations to converge

Consensus (mean) Configuration

X Y
[1,] 0.15233235 -0.025236626
[2,] 0.19328978 -0.095041326
[3,]1 -0.03370053 -0.006929886
[4,] -0.28182427 -0.089370884
[5,] -0.31072667 -0.057833073
[6,] -0.32600020 -0.032082163

[7,] -0.31757271 0.040056683
[8,] -0.18824427 0.100347120
[9,]1 0.02159274 0.098853350
[10,]1 0.18946790 0.074940129
[11,] 0.35213100 0.061515224
[12,]1 0.54925486 -0.069218549

Function returns a list containing the shape coordinates and centroid sizes:

plethodon.gpa$coords # a 3D array of Procrustes coordinates
plethodon.gpa$Csize # a vector of centroid sizes

Other important information about the GPA is stored in the plethodon.gpa list. Use attributes to see,
including: iter The number of GPA iterations until convergence was found (or GPA halted); points. VCV
Variance-covariance matriz among landmark coordinates; points.var* Variances of landmark points; consnsus
The consensus (mean) configuration; akin to using mshape; data Data frame with an n x (pk) matrix of
Procrustes residuals and centroid size; ) Final convergence criterion value; slide.method Method used to
slide semilandmarks.

Stored in the example dataset plethodon are the wireframe links to aid visualizations. The function
plotAllSpecimens plots landmark coordinates for a set of specimens:

plotAllSpecimens (plethodon.gpa$coords,links=plethodon$links)

To view the options for this function
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?plotAllSpecimens

4.1.3 Procrustes Superimposition of datasets containing semilandmarks along a curve

The first example contained landmarks that are fixed, representing homologous points on the object. Of-
tentimes, researchers need to also use semilandmarks, which are points on a geometric feature (curve, edge,
surface) defined mathematically in terms of its position on the feature (most commonly equally spaced).
Semilandmarks provide information about curvature, and should be used alongside fixed landmarks.

Figure 7: Hummingbird dataset from Berns & Adams 2010

The hummingbird dataset, from Berns & Adams 2010, contains fixed landmarks (open circles) and semiland-
marks (closed circles) that define the curvature of the beak. When semilandmarks are included in the dataset,
a few extra parameters should be specified in the gpagen function.

First a curve sliding matrix should be made, to tell the function which landmarks are semilandmarks and
how they will slide during the superimposition.

data(hummingbirds) # ezample dataset
hummingbirds$curvepts # an exzample curve sliding matriz
before slide after

[1,] 1 11 12
[2,] 11 12 13
[3,] 13 14 15
[4,] 7 15 14
[5,] 12 13 14
[6,] 1 16 17
[7,] 16 17 18
[8,] 17 18 19
[9,] 18 19 20
[10,] 10 20 19
[11,] 2 21 22
[12,] 21 22 23
[13,] 22 23 24
[14,] 23 24 25
[15,] 8 25 24

The landmarks listed in the middle column are the semilandmarks.
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This image is a visual version of the matrix, made using the interactive function define.sliders (see helper
functions below).

This curve sliding matrix is used in the gpagen option curves. There are two options for how the semiland-
marks will slide, using Procrustes distance or bending energy:

# Using Procrustes Distance for sliding

A <- gpagen(hummingbirds$land,
curves=hummingbirds$curvepts,
ProcD=TRUE, print.progress = FALSE)

# Using bending energy for sliding

B <- gpagen(hummingbirds$land,
curves=hummingbirds$curvepts,
ProcD=FALSE, print.progress = FALSE)

For more information of how these two methods differ, and when to use which, see Gunz and Mitteroecker
2013 (Hystrix, http://www.italian-journal-of-mammalogy.it/article/view/6292).

4.1.4 Procrustes Superimposition of datasets containing semilandmarks over a 3D surface

As stated above, semilandmarks can also be points on a geometric feature such as a 3D surface. These data
can be collected using the buildtemplate and digitsurface functions in geomorph.

The example data we shall now use is scallops. The first specimen is plotted below, showing that there are
5 fixed landmarks (red), 11 semilandmarks along the shell edge (blue) and 30 semilandmarks over the shell
surface.

data(scallops) # dataset of scallop shells with semtilandmarks
attributes(scallops)
scallops$curvslide # the curve sliding matriz
head(scallops$surfslide) # the surfaces sliding matriz
scallop.gpa = gpagen(A=scallops$coorddata,
curves=scallops$curvslide,
surfaces=scallops$surfslide) # GPA-alignment
scallop.gpa$coords # 3D array of Procrustes coordinates
scallop.gpa$Csize # Vector of centroid sizes

With 3D data, the function plots the aligned specimens in an rgl window.

32


http://www.italian-journal-of-mammalogy.it/article/view/6292

Figure 8: Scallop data

To make one these curve sliding matrices, you can use the interactive function define.sliders (see helper

functions below).
For all subsequent analyses, the Procrustes coordinates (i.e., Y$coords) should be used

4.2 Generalized Procrustes Analysis with Bilateral Symmetry Analysis

(bilat.symmetry)

If the data has bilateral symmetry, the first step is to perform a superimposition of the raw coordinate data
taking into account the symmetry. This function also assesses the statistical differences in the symmetric

data.
Function
bilat.symmetry(A, ind = NULL, side = NULL, replicate = NULL, object.sym = FALSE,

land.pairs = NULL, data = NULL, iter = 999, seed = NULL, RRPP = TRUE,

print.progress = TRUE)

Arguments
e A A 3D array (p x k x n) containing GPA-aligned coordinates for a set of specimens [for “ob-

ject.sym=FALSE, A is of dimension (n x k x 2n)]

e ind A vector containing labels for each individual. For matching symmetry, the matched pairs receive

the same label (replicates also receive the same label)

o side An optional vector (for matching symmetry) designating which object belongs to which ‘side-group’
o replicate An optional vector designating which objects belong to which group of replicates

e object.sym A logical value specifying whether the analysis should proceed based on object symmetry

=TRUE or matching symmetry =FALSE
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e land.pairs An optional matrix (for object symmetry) containing numbers for matched pairs of landmarks
across the line of symmetry

e data A data frame for the function environment, see geomorph.data.frame. It is imperative that the
variables “ind”, “side”, and “replicate” in the data frame match these names exactly

o iter Number of iterations for significance testing

e seed An optional argument for setting the seed for random permutations of the resampling procedure.
If left NULL (the default), the exact same P-values will be found for repeated runs of the analysis (with
the same number of iterations). If seed = “random”, a random seed will be used, and P-values will vary.
One can also specify an integer for specific seed values, which might be of interest for advanced users

e RRPP A logical value indicating whether residual randomization should be used for significance testing

o print.progress A logical value to indicate whether a progress bar should be printed to the screen. This
is helpful for long-running analyses.

The function quantifies components of shape variation for a set of specimens as described by their patterns of
symmetry and asymmetry. Here, shape variation is decomposed into variation among individuals, variation
among sides (directional asymmetry), and variation due to an individual x side interaction (fluctuating
symmetry). These components are then statistically evaluated using Procrustes ANOVA and Goodall’s F
tests (i.e., an isotropic model of shape variation). Methods for both matching symmetry and object symmetry
can be implemented. Matching symmetry is when each object contains mirrored pairs of structures (e.g.,
right and left hands) while object symmetry is when a single object is symmetric about a midline (e.g., right
and left sides of human faces). Analytical and computational details concerning the analysis of symmetry in
geometric morphometrics can be found in Mardia et al. (2000) and Klingenberg et al. (2002).

Analyses of symmetry for matched pairs of objects is implemented when object.sym=FALSE. Here, a 3D
array [p x k x 2n] contains the landmark coordinates for all pairs of structures (2 structures for each of n
specimens). Because the two sets of structures are on opposite sides, they represent mirror images, and one
set must be reflected prior to the analysis to allow landmark correspondence. It is assumed that the user has
done this prior to performing the symmetry analysis. Reflecting a set of specimens may be accomplished by
multiplying one coordinate dimension by ‘-1’ for these structures (either the x-, the y-, or the z-dimension).
A vector containing information on individuals and sides must also be supplied. Replicates of each specimen
may also be included in the dataset, and when specified will be used as measurement error (see Klingenberg
and Mclntyre 1998).

Analyses of object symmetry is implemented when object.sym=TRUE. Here, a 3D array [p x k x n] contains
the landmark coordinates for all n specimens. To obtain information about asymmetry, the function generates
a second set of objects by reflecting them about one of their coordinate axes. The landmarks across the line
of symmetry are then relabeled to obtain landmark correspondence. The user must supply a list of landmark
pairs. A vector containing information on individuals must also be supplied. Replicates of each specimen
may also be included in the dataset, and when specified will be used as measurement error.

Notes for geomorph 3.0

Compared to older versions of geomorph, some results can be expected to be slightly different. Starting
with geomorph 3.0, results use only type I sums of squares (SS) with either full randomization of raw shape
values or RRPP (preferred with nested terms) for analysis of variance (ANOVA). Older versions used a
combination of parametric and non-parametric results, as well as a combination of type I and type IIT SS.
While analytical conclusions should be consistent (i.e., “significance” of effects is the same), these updates
maintain consistency in analytical philosophy. This change will require longer computation time for large
datasets, but the trade-off allows users to have more flexibility and eliminates combining disparate analytical
philosophies.

Note also that significance of terms in the model are found by comparing F-values for each term to those
obtained via permutation. F-ratios and df are not strictly necessary (a ratio of SS would suffice), but they
are reported as is standard for anova tables. Additionally, users will notice that the df reported are based on
the number of observations rather than a combination of objects * coordinates * dimensions, as is sometimes
found in morphometric studies of symmetry. However, this change has no effect on hypothesis testing, as
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only SS vary among permutations (df, coordinates, and dimensions are constants).

4.2.1 Example of matching symmetry

data(mosquito)
gdf <- geomorph.data.frame(wingshape = mosquito$wingshape,
ind=mosquito$ind, side=mosquito$side,
replicate=mosquito$replicate) # make geomorph.data.frame
mosquito.sym <- bilat.symmetry(A = wingshape, ind = ind, side = side,
replicate = replicate, object.sym = FALSE, RRPP = TRUE,
iter = 499, data = gdf, print.progress = FALSE) # perform matching symmetry GPA
summary (mosquito.sym)

Call:

bilat.symmetry(A = wingshape, ind = ind, side = side, replicate = replicate,
object.sym = FALSE, data = gdf, iter = 499, RRPP = TRUE,
print.progress = FALSE)

Symmetry (data) type: Matching
Type I (Sequential) Sums of Squares and Cross-products
Randomized Residual Permutation Procedure Used

500 Permutations

Shape ANOVA

Df SS MS Rsq F Z Pr(>F)
ind 9 0.104888 0.0116542 0.45533 2.6901 1.74089 0.062 .
side 1 0.003221 0.0032209 0.01398 0.7435 -0.58381 0.674
ind:side 9 0.038990 0.0043323 0.16926 1.0407 -1.40680 0.954
ind:side:replicate 20 0.083259 0.0041629 0.36143

Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Centroid Size ANOVA
Df SS MS Rsq F Z Pr(>F)

ind 9 4.1497e-09 4.6107e-10 0.18555 0.5965 -0.81888 0.898
side 1 3.4740e-10 3.4738e-10 0.01553 0.4494 -0.41443 0.530
ind:side 9 6.9569e-09 7.7299e-10 0.31108 1.4170 -0.32481 0.566

ind:side:replicate 20 1.0910e-08 5.4549e-10 0.48784

Function returns the ANOVA table for analysis of symmetry and a graph showing the shape deforma-
tions relating to the symmetric and asymmetric components of shape. The function returns also the
symmetric component of shape variation ($symm.shape) and the asymmetric component of shape variation
($asymm. shape), to be used in subsequent analyses, just as the Procrustes coordinates. NOTE: that the dim-
names() of $symm.shape have a prefix ind. To remove, simply: dimnames (mosquito.sym$symm.shape) [[3]]
<- sub("ind", "", dimnames(mosquito.sym$symm.shape) [[3]])
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4.2.2 Example of object symmetry

data(scallops)
gdf <- geomorph.data.frame(shape = scallops$coorddata, ind=scallops$ind)
scallop.sym <- bilat.symmetry(A = shape, ind = ind, object.sym = TRUE,
land.pairs=scallops$land.pairs, data = gdf, RRPP = TRUE,
iter = 499, print.progress = FALSE) # perform object symmetry GPA
summary (scallop.sym)

Call:
bilat.symmetry(A = shape, ind = ind, object.sym = TRUE, land.pairs = scallops$land.pairs,
data = gdf, iter = 499, RRPP = TRUE, print.progress = FALSE)

Symmetry (data) type: Object
Type I (Sequential) Sums of Squares and Cross-products
Randomized Residual Permutation Procedure Used

500 Permutations

Shape ANOVA

Df S8 MS Rsq F Z Pr(>F)
ind 4 0.063030 0.0157574 0.64135 9.8316 -1.2844 0.978
side 1 0.028835 0.0288354 0.29341 17.9914 1.9004 0.064 .

ind:side 4 0.006411 0.0016027 0.06523

Signif. codes: O '"***' 0.001 '**' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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Figure 9: Scallop data

4.3 Helper functions
4.3.1 Define sliding semilandmarks (define.sliders)

An interactive function to define which landmarks will “slide” along curves.
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Function

define.sliders(spec, nsliders, surfsliders = FALSE)

Arguments

e spec Name of specimen, as an object matrix containing 2D or 3D landmark coordinates

o nsliders Number of landmarks to be semilandmarks that slide along curves

o surfsliders Logical (3D only) If ‘spec’ contains landmarks that are “surface sliders”, made by
buildtemplate, “surfslide.csv” should be in working directory

Function takes a matrix of digitized landmark coordinates and helps user choose which landmarks will be
treated as “curve sliders” in Generalized Procrustes analysis gpagen. This type of semilandmark “slides”
along curves lacking known landmarks (see Bookstein 1997 for algorithm details). Each sliding semilandmark
(“sliders”) will slide between two designated points, along a line tangent to the specified curvature.

4.3.1.1 Selection in 2D

Choosing which landmarks will be sliders involves landmark selection using a mouse in the plot window.
To define the sliders, for each sliding landmark along the curve in the format ‘before-slider-after’, using the
LEFT mouse button (or regular button for Mac users), click on the hollow circle to choose the landmark in
the following order: 1) Click to choose the first landmark between which semi-landmark will “slide”, 2) Click
to choose sliding landmark, 3) Click to choose the last landmark between which semi-landmark will “slide”.
Selected landmarks will be filled in and lines are drawn connecting the three landmarks, and will highlight
the sliding semilandmark in red and the flanking landmarks in blue.

data(hummingbirds)
define.sliders (hummingbirds$land[,,1], nsliders=10)

Locator active (Esc to finish) Finish
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Figure 10: Interactive plot window where the landmarks are plotted (open circles). Left-click in the order
shown to define how a landmark should slide

When complete,

4.3.1.2 Selection in 3D
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Figure 11: Completed window, where each landmark that will slide (blue) are shown, and red arrows indicate
direction of sliding permitted

To define the sliders, for each sliding landmark along the curve in the format ‘before-slider-after’, using RIGHT
mouse button to select: 1) Click on landmark to choose the first landmark between which semi-landmark will
“slide”, 2) Click box to choose sliding landmark, 3) Click box to choose the last landmark between which
semi-landmark will “slide”, Screen will show lines connecting the three landmarks, and will highlight the
sliding semilandmark in red.

Here we will run it using the first specimen of the scallop example dataset

data(scallops)
define.sliders(scallops$coorddatal,,1],
nsliders=11,
surfsliders = scallops$surfslide) # Interactive function in rgl window

The way this function works is to select the landmarks in a “before” “slide” “after” pattern, so defining
between which landmarks the semilandmark will slide:

Left: In action. Right: Finished. And in the console will be printed:

semi-landmark 16 slides between landmarks 1 and 15
semi-landmark 15 slides between landmarks 16 and 14
semi-landmark 14 slides between landmarks 15 and 13
semi-landmark 13 slides between landmarks 14 and 12
semi-landmark 12 slides between landmarks 13 and 11
semi-landmark 11 slides between landmarks 12 and 10
semi-landmark 10 slides between landmarks 11 and 9
semi-landmark 9 slides between landmarks 10 and 8
semi-landmark 8 slides between landmarks 9 and 7
semi-landmark 7 slides between landmarks 8 and 6
semi-landmark 6 slides between landmarks 7 and 5

This procedure is overlapping, so for example a curve defined by a sequence of semilandmarks, the user must
select the 2nd point of the first three to be the 1st for the next e.g., 1 2 3 then 2 3 4, etc. Function returns a
‘curves x 3’ matrix containing the landmark address of the curve sliders, indicating the points between which
the selected point will “slide”, written to the working directory as “curveslide.csv”.
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Right-click gy
o -20 0 20 -20 0

select landmark

Figure 12: During (left) and completed (right) rgl windows showing define.sliders for 3D landmarks

curveslide.csv

before slide after

15 16 1
16 15 14
15 14 13
14 13 12
13 12 11
12 11 10
11 10 9
10 9 8
9 8 7
8 7 6
7 6 5

which can be read in for use with gpagen:

curves <- as.matrix(read.csv('"curveslide.csv", header=T))
# as.matrixz is necessary here to ascertain numeric

39



5 DATA ANALYSIS

After the data have been superimposed with gpagen or bilat.symmetry, the Procrustes coordinates (e.g.,
$coords in the gpagen out list) can be used in many ordination methods and visualization methods.

Raw coordinate data

Generall hmmuh; Generalize Procrustes
= Analysis for bilateral
symmetry

plotGMPhyloMorphoSpace

plotRefToTarget

Figure 13: Overview of some of the analysis (blue) and visualization (green) functions in geomorph

The next 4 chapters will cover geomorph’s analytical functions, organized as follows (hyperlinks): covariation
methods, morphological integration methods, phylogenetic comparative methods, other specialist methods.
Ordination methods and visualization methods accompanying these analyses are in chapters 9-13.

For all of the following functions it is assumed that the landmarks have previously been aligned
using Generalized Procrustes Analysis (GPA).

NOTE: The analytical functions presented here are for the analysis of multivariate data; most commonly
this is Procrustes shape variables, but can also be used with non-shape, morphometric data (e.g. a set of
iterlandmark distances, a.k.a. linear measurements) or any set of continuous variables.

Presented here is an extended version what is provided in the manual pages - it is recommend to read the
manual page for the function by typing ?function.name in the console to see the most up-to-date info about
the function. Many functions return information in the form of a list, therefore we recommend users save the
results to an object as follows:

res <- procD.lm(shape ~ size)

From version 3.0, almost all analytical functions work with the generic functions, print/summary, and
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plot. Thus following from the above example, using plot(res) will return a plot for that function (see
?plot.function.name for more options), and print(res) or summary(res) will print into the console the
results of the analytical function. Other objects retudrned in the res list might be useful for further analyses;
see the specific function’s manual page for more details.

6 Covariation methods

The following methods allow the user to test for relationship between shape and other factors.

6.1 Procrustes ANOVA /regression for shape data (procD.1m)

Function performs Procrustes ANOVA with permutation procedures to assess statistical hypotheses describing
patterns of shape variation and covariation for a set of Procrustes-aligned coordinates. To see the manual
page for this function, type ?geomorph: :procD.1lm.

Function

procD.1m(f1, iter = 999, seed = NULL, RRPP = TRUE,
effect.type = c("F", "SS", "cohen"), int.first = FALSE,
data = NULL, print.progress = TRUE, ...)

Arguments

e f1 A formula for the linear model (e.g., y~x1+x2)

e iter Number of iterations for significance testing

e seed An optional argument for setting the seed for random permutations of the resampling procedure.
If left NULL (the default), the exact same P-values will be found for repeated runs of the analysis (with
the same number of iterations). If seed = “random”, a random seed will be used, and P-values will vary.
One can also specify an integer for specific seed values, which might be of interest for advanced users.

e RRPP A logical value indicating whether residual randomization should be used for significance testing
(see Introduction VI. Permutation tests)

e effect.type One of “F”, “SS”, or “cohen”, to choose from which random distribution to estimate effect size.
(The option, “cohen”, is for Cohen’s f-squared values. The default is “F”. Values are log-transformed
before z-score calculation to assure normally distributed data.)

o int.first A logical value to indicate if interactions of first main effects should precede subsequent main
effects}

e data A data frame for the function environment, see geomorph.data.frame

o print.progress A logical value to indicate whether a progress bar should be printed to the screen. This
is helpful for long-running analyses

e ... Arguments passed on to procD.fit (typically associated with the 1m function)

6.1.1 Common uses of this function
This function requires an expression of the form y ~ model, interpreted as a specification that the response y
is modeled by a linear predictor specified symbolically by model.

y is usually the shape coordinates (from gpagen). The other terms (x) can be continuous (e.g. centroid size)
or discrete (categorical variable, e.g. sex). Some common models and questions:

o Simple Multivariate Regression: y ~ x, e.g., Does shape correlate with size (x)?
o Single-factor MANOVA: y ~ a, e.g., Does shape differ between sexes (a)?
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o Single-factor MANCOVA: y ~ x * a [means a + x + a:x, where : denotes interaction], e.g., Does
shape differ between sexes (a), while accounting for shape covarying with size (x)?

o Multiple-factor MANOVA: y ~ a + b, e.g., Does shape differ between sexes as well as localities (b)?

o Factorial MANOVA: y ~ a * b [means a + b + a:b, where : denotes interaction],e.g., Does shape
differ between sexes and localities, accounting for the possibility that the two factors may interact (one
sex more likely found in a particular locality)

o Nested MANOVA:y ~ a / b, a hierarchical model, where b is nested within a. e.g., replicates (b) of
treatments (a).

NOTE: This function can also be used with non-shape, multivariate data in y (e.g. a set of iterlandmark
distances, a.k.a. linear measurements).

Returned information The function returns a lot of information. In addition to using plot or summary on
the returned object, the following may be useful for further analysis: * residuals The residuals (observed
responses - fitted responses).

6.1.2 Helper function: nested.update

If one has performed a nested model with procD.1m, then the function nested.update is needed to adjust
models. Type 7nested.update for details.

Example MANOVA example for Goodall’s F test (multivariate shape vs. factors)

data(plethodon) # exzample dataset

Y.gpa <- gpagen(plethodon$land, print.progress = FALSE) # GPA-alignment

gdf <- geomorph.data.frame(shape = Y.gpa$coords,

site = plethodon$site, species = plethodon$species) # make geomorph data frame

# permutation option 1: randomize raw values
procD.1lm(shape ~ species * site, data = gdf, iter = 999,
RRPP = FALSE, print.progress = FALSE)

Call:
procD.1m(f1 = shape ~ species * site, iter = 999, RRPP = FALSE,
data = gdf, print.progress = FALSE)

Type I (Sequential) Sums of Squares and Cross-products
Randomization of Raw Values used
1000 Permutations

Df SS MS Rsq F Z Pr(>F)
species 1 0.029258 0.029258 0.14856 14.544 4.4828 0.001 *x*
site 1 0.064375 0.064375 0.32688 32.000 5.55688 0.001 *x*
species:site 1 0.030885 0.030885 0.15682 15.352 4.5841 0.001 *x*
Residuals 36 0.072422 0.002012
Total 39 0.196940
Signif. codes: 0 '#*x' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

# permutation option 1: randomize residuals
procD.1lm(shape ~ species * site, data = gdf, iter = 999,
RRPP = TRUE, print.progress = FALSE)

Call:
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procD.1m(f1 = shape ~ species * site, iter = 999, RRPP = TRUE,
data = gdf, print.progress = FALSE)

Type I (Sequential) Sums of Squares and Cross-products
Randomized Residual Permutation Procedure Used
1000 Permutations

Df SS MS Rsq F Z Pr(>F)
species 1 0.029258 0.029258 0.14856 14.544 4.4828 0.001 *x*
site 1 0.064375 0.064375 0.32688 32.000 5.9466 0.001 *x*
species:site 1 0.030885 0.030885 0.15682 15.352 6.8745 0.001 *x*
Residuals 36 0.072422 0.002012
Total 39 0.196940
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Example Multivariate Regression

data(ratland)

rat.gpa<-gpagen(ratland, print.progress = FALSE) #GPA-alignment
gdf <- geomorph.data.frame(rat.gpa)

# geomorph data frame is easy without additional input

# uses lements of the rat.gpa list

procD.1lm(coords ~ Csize, data = gdf, iter = 999, RRPP = FALSE,
print.progress = FALSE) # randomize raw values

Call:
procD.1m(f1 = coords ~ Csize, iter = 999, RRPP = FALSE, data = gdf,
print.progress = FALSE)

Type I (Sequential) Sums of Squares and Cross-products
Randomization of Raw Values used
1000 Permutations

Df SS MS Rsq F Z Pr(>F)
Csize 1 0.64035 0.64035 0.76016 513.46 6.3446 0.001 *x*
Residuals 162 0.20203 0.00125
Total 163 0.84239
Signif. codes: 0 '**x' 0.001 'sxx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

procD.1m(coords ~ Csize, data = gdf, iter = 999, RRPP = TRUE,
print.progress = FALSE) # randomize raw values

Call:
procD.1m(f1 = coords ~ Csize, iter = 999, RRPP = TRUE, data = gdf,
print.progress = FALSE)

Type I (Sequential) Sums of Squares and Cross-products
Randomized Residual Permutation Procedure Used

1000 Permutations

Df Ss MS Rsq F Z Pr(OF)
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Csize 1 0.64035 0.64035 0.76016 513.46 6.3446 0.001 *x*
Residuals 162 0.20203 0.00125
Total 163 0.84239

Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

# Outcomes should be exzactly the same

### Extracting objects and plotting options

rat.anova <- procD.lm(coords ~ Csize, data = gdf, iter = 999, RRPP = TRUE,
print.progress = FALSE)

summary (rat.anova)

Call:
procD.1m(f1 = coords ~ Csize, iter = 999, RRPP = TRUE, data = gdf,
print.progress = FALSE)

Type I (Sequential) Sums of Squares and Cross-products
Randomized Residual Permutation Procedure Used
1000 Permutations

Df SS MS Rsq F Z Pr(>F)
Csize 1 0.64035 0.64035 0.76016 513.46 6.3446 0.001 x*x*
Residuals 162 0.20203 0.00125
Total 163 0.84239
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
# diagnostic plots
plot(rat.anova, type = "diagnostics")
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Residuals vs. Fitted
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# diagnostic plots, including plotOutliers
plot(rat.anova, type = "diagnostics", outliers = TRUE)
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Residuals vs. Fitted
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# PC plot rotated to major azxzis of fitted walues
plot(rat.anova, type = "PC", pch = 19, col = "blue")
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# Uses restduals from model to find the commonom regression component

# for a predictor from the model

plot(rat.anova, type = "regression", predictor = gdf$Csize, reg.type = "CRC",
pch = 19, col = "green")
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# Uses residuals from model to find the projected regression scores
rat.plot <- plot(rat.anova, type = "regression", predictor = gdf$Csize, reg.type = "RegScore",
pch = 21, bg = "yellow")
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6.2 Advanced Procrustes ANOVA and pairwise tests for shape data, using com-
plex linear models (advanced.procD.1lm)

The function quantifies the relative amount of shape variation explained by a suite of factors and covariates
in a “full” model, after accounting for variation in a “reduced” model. Inputs are formulae for full and
reduced models (order is not important, but it is better to list the model with the most terms first
or use a geomorph data frame), plus indication if means or slopes are to be compared among groups,
with appropriate formulae to define how they should be compared. To see the manual page for this
function, type ?geomorph: :advanced.procD.1lm. (This function replaces the now defunct pairiwseD.test
and pairiwse.slope.test).

Function

advanced.procD.1m(f1, f2, groups = NULL, slope = NULL,
angle.type = c("r","deg", "rad"), phy = NULL, pc.shape = FALSE,
iter = 999, seed = NULL, print.progress = TRUE, data = NULL,...)

Arguments

o f1 A formula for the linear model (e.g., y~x1+x2)

o f2 A formula for another linear model (e.g., ~ x1 + x2 + x3 + a*b). f1 and {2 should be nested.

o groups A formula for grouping factors (e.g., ~ a, or ~ a*b)

o slope A formula with one covariate (e.g., ~ x3)

e angle.type A value specifying whether differences between slopes should be represented by vector
correlations (r), radians (rad) or degrees (deg)

o phy A phylogenetic tree of class phylo - see 7ape: :read.tree (optional)

e pc.shape An argument for whether analysis should be performed on the principal component scores of
shape. This is a useful option if the data are high-dimensional (many more variables that observations)
but will not affect results

e iter Number of iterations for significance testing

e seed An optional argument for setting the seed for random permutations of the resampling procedure.
If left NULL (the default), the exact same P-values will be found for repeated runs of the analysis (with
the same number of iterations). If seed = “random”, a random seed will be used, and P-values will vary.
One can also specify an integer for specific seed values, which might be of interest for advanced users.

e data A data frame for the function environment, see geomorph.data.frame

o print.progress A logical value to indicate whether a progress bar should be printed to the screen. This
is helpful for long-running analyses
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e ... Arguments passed on to procD.fit (typically associated with the 1m function)

NOTE: This function can also be used with non-shape, multivariate data in y (e.g. a set of iterlandmark
distances, a.k.a. linear measurements).

For more information on how to use this function see: https://github.com/geomorphR/geomorph/wiki/
advanced.procD.lm-for- pairwise-tests-and-model-comparisons

Example
Example of a nested model comparison (as with ANOVA with RRPP)

data(plethodon) # ezample dataset

Y.gpa <- gpagen(plethodon$land, print.progress = FALSE) # GPA-alignment
gdf <- geomorph.data.frame(Y.gpa, species = plethodon$species,

site = plethodon$site) # make geomorph data frame

ANOVA <- advanced.procD.1lm(fl= coords ~ log(Csize) + species,
f2= ~ log(Csize)*species*site, iter=249, data = gdf,
print.progress = FALSE)

# summary (ANOVA, formula = FALSE) # formulas too long to print

Example of a test of a factor interaction, plus pairwise comparisons

PW.means.test <- advanced.procD.lm(f1= coords ~ site*species, f2= ~ site + species,
groups = ~sitexspecies, iter=249, data = gdf,

print.progress = FALSE)

# summary (PW.means. test, formula = TRUE)

Example of a test of a factor interaction, plus pairwise comparisons, accounting for a common allometry

PW.ls.means.test <- advanced.procD.lm(fl= coords ~ Csize + sitexspecies,
f2= ~ log(Csize) + site + species,

groups = ~ sitexspecies, slope = ~log(Csize), iter = 249, data = gdf,
print.progress = FALSE)

# summary (PW.ls.means. test, formula = TRUE)

Example of a test of homogeneity of slopes, plus pairwise slopes comparisons

gdf$group <- factor(paste(gdf$species, gdf$site, sep="."))

HOS <- advanced.procD.lm(f1= coords ~ log(Csize) + group,

f2= ~ log(Csize) * group, groups = ~ group,

slope = ~ log(Csize), angle.type = "deg", iter = 249, data = gdf,
print.progress = FALSE)

# summary (HOS, formula = FALSE) # formulas too long to print

Example of partial pairwise comparisons, given greater model complexity. Plus, working with class ad-
vanced.procD.lm objects.

aov.pleth <- advanced.procD.lm(fl= coords ~ log(Csize)*sitex*species,
f2= ~ log(Csize) + sitexspecies, groups = ~ species,

slope = ~ log(Csize), angle.type = "deg", iter = 249, data = gdf,
print.progress = FALSE)

summary (aov.pleth, formula = FALSE) # formulas too long to print

Call:
advanced.procD.1m(f1 = coords ~ log(Csize) * site * species,
f2 = ~log(Csize) + site * species, groups = ~species, slope = ~log(Csize),
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angle.type = "deg", iter = 249, print.progress = FALSE, data = gdf)

Randomized Residual Permutation Procedure Used
250 Permutations
ANOVA Table

Df SSE Ss R2 F Z Pr(>F)
Reduced Model 35 0.068671
Full Model 32 0.061718 0.0069531 0.035306 1.2017 5.036 0.004 **

Signif. codes: 0O '#**' 0.001 'sxx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Slopes
[,1] [,2] [,3] [,4] [,5]
Jord -0.081484968 -0.03761677 -0.0648701016 -0.06178754 0.003922133
Teyah 0.007244613 -0.01070130 0.0006410929 -0.01848134 0.017360168
[,6] [,7] [,8] [,9] [,10]
Jord 0.003676141 0.003351926 -0.01677718 0.001597638 -0.003321746
Teyah 0.021465694 -0.008738975 0.01889856 -0.009999672 0.014551254
[,11] [,12] [,13] [,14] [,15]
Jord 0.007569908 0.018788107 0.02469451 0.008206906 0.03193667
Teyah -0.015958614 -0.006784027 -0.02050871 -0.016958249 0.03575095
[,16] [,17] [,18] [,19] [,20]
Jord 0.01536670 -0.001856277 0.0143840140 -0.02302729 -0.005194829
Teyah -0.01869515 -0.011425740 -0.0003617453 0.01608166 -0.008239490
[,21] [,22] [,23] [,24]
Jord 0.06433678 -0.002487285 0.03382909 0.06676348
Teyah 0.01617331 0.002470573 -0.02662008 0.02283522

Effect sizes (Z)

Jord Teyah
Jord 0.0000000 0.2415322
Teyah 0.2415322 0.0000000

P-values

Jord Teyah
Jord 1.000 0.412
Teyah 0.412 1.000

Effects sizes (Z)

Jord Teyah
Jord 0.000000 2.126904
Teyah 2.126904 0.000000

P-values

Jord Teyah
Jord 1.00 0.02
Teyah 0.02 1.00
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# Diagnostic plots
plot(aov.pleth)
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Residuals vs. PC 1 fitted
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# Extracting objects from results
aov.pleth$slopes # extract the slope wvectors

[,1] [,2] [,3] [,4]
Jord -0.081484968 -0.03761677 -0.0648701016 -0.06178754
Teyah 0.007244613 -0.01070130 0.0006410929 -0.01848134

[,6] [,7] [,8] [,9]

Jord 0.003676141 0.003351926 -0.01677718 0.001597638 -

Teyah 0.021465694 -0.008738975 0.01889856 -0.009999672

[,11] [,12] [,13] [,14]
Jord 0.007569908 0.018788107 0.02469451 0.008206906
Teyah -0.015958614 -0.006784027 -0.02050871 -0.016958249

[,16] [,17] [,18] [,19]
Jord 0.01536670 -0.001856277 0.0143840140 -0.02302729
Teyah -0.01869515 -0.011425740 -0.0003617453 0.01608166
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[,5]
0.003922133
0.017360168

[,10]
0.003321746
0.014551254

[,15]
0.03193667
0.03575095

[,20]
-0.005194829
-0.008239490



[,21] [,22] [,23] [,24]
Jord 0.06433678 -0.002487285 0.03382909 0.06676348
Teyah 0.01617331 0.002470573 -0.02662008 0.02283522

6.3 Procrustes ANOVA /regression, specifically for shape-size covariation (al-
lometry) (procD.allometry)

Function performs Procrustes ANOVA with permutation procedures to assess statistical hypotheses describing
patterns of shape covariation with size for a set of Procrustes-aligned coordinates. Other factors or covariates
can also be included in the analysis. This function also provides results for plotting allometric curves.

Function

procD.allometry(f1, f2 = NULL, logsz = TRUE, iter = 999,
seed = NULL, alpha = 0.05, RRPP = TRUE, effect.type = c("F", "SS", "cohen"),
print.progress = TRUE, data = NULL, ...)

Arguments

e f1 A formula for the relationship of shape and size; e.g., Y ~ X

e f2 An optional right-hand formula for the inclusion of groups; e.g., ~ groups

e f3 A optional right-hand formula for the inclusion of additional variables; e.g., ~a +b 4+ ¢ + ...

e logsz A logical argument to indicate if the variable for size should be log-transformed

e iter Number of iterations for significance testing

e seed An optional argument for setting the seed for random permutations of the resampling procedure.
If left NULL (the default), the exact same P-values will be found for repeated runs of the analysis (with
the same number of iterations). If seed = “random”, a random seed will be used, and P-values will vary.
One can also specify an integer for specific seed values, which might be of interest for advanced users

e alpha The significance level for the homegeneity of slopes test

e RRPP A logical value indicating whether residual randomization should be used for significance testing
(see Introduction VI. Permutation tests)

e effect.type One of “F”, “SS”  or “cohen”, to choose from which random distribution to estimate effect
size. (The default is “F”)

o print.progress A logical value to indicate whether a progress bar should be printed to the screen. This
is helpful for long-running analyses

e data A data frame for the function environment, see geomorph.data.frame

e ... Arguments passed on to procD.fit (typically associated with the 1m function)

Details

The function quantifies the relative amount of shape variation attributable to covariation with organism size
(allometry) plus (potentially) another grouping factor in a linear model, so as to provide initial visualizations
of patterns of shape allometry. Data input is specified by formulae (e.g., Y ~ X), where ‘Y’ specifies the
response variables (shape data), and ‘X’ contains A SINGLE independent continuous variable representing
size. The response matrix Y’ can be either in the form of a two-dimensional data matrix of dimension (n x
[p x k]), or a 3D array (p x n x k). It is assumed that -if the data are based on landmark coordinates - the
landmarks have previously been aligned using Generalized Procrustes Analysis (GPA) [e.g., with gpagen].
Additionally, one has the option of providing a second formula where groups are specified in the form of ~
group. If groups are provided a “homogeneity of slopes” test will be performed.

It is assumed that the order of the specimens in the shape matrix matches the order of values in the
independent variables. Linear model fits (using the lm function) can also be input in place of formulae.
Arguments for Im can also be passed on via this function. For further information about ANOVA in geomorph,
resampling procedures used, and output, see procD.lm or advanced.procD.lm. If greater flexibility is required
for variable order, advanced.procD.lm should be used.

It is strongly recommended that geomorph.data.frame is used to create and input a data frame. This will
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reduce problems caused by conflicts between the global and function environments. In the absence of a
specified data frame, procD.allometry will attempt to coerce input data into a data frame, but success is not
guaranteed.

The generic functions, print, summary, and plot all work with procD.allometry. The generic function, plot,
produces plots of allometric curves, using one of three methods input (see below). If diagnostic plots on
model residuals are desired, procD.lm should be used with the resulting model formula. This, along with the
data frame resulting from analysis with procD.allometry can be used directly in procD.lm, which might be
useful for extracting ANOVA components (as procD.allometry is far more basic than procD.lm, in terms of
output).

A note on allometric models

This function is intended to be used for the graphical visualization of simple allometric patterns. The method
is appropriate for models such as shape~log(size) and shape~log(size) + groups. Three plotting options,
the common allometric coefficient (CAC), regression scores (RegScore), and predicted lines (PredLine) are
implemented as originally described in the literature. NOTE however that for more complex models with
additional parameters, one may instead wish to use the plotting capabilities that accompany procD.1lm (see
below for more details).

Notes for experienced or advanced users

Experienced or advanced users will probably prefer using procD.1m with a combination of plot.procD.1lm,
shape.predictor, and plotRefToTarget for publication-quality analyses and graphics. As stated above,
use of procD.allometry is for visualizing simple allometric models that do not contain additional covariates.
Thus, procD.allometry may be thought of as a wrapper function for procD.1m, but only for a restricted
set of models and using a philosophy for model selection based on the outcome of a homogeneity of slopes
test. This is not necessary if one wishes to define a model, irrespective of this outcome, or if more complex
models are of interest. In these circumstances procD.1m offers much greater flexibility, and provides more
statistically general approaches to visualizing patterns. Thus, procD.allometry might be thought of as an
exploratory tool, if one is unsure how to model allometry for multiple groups. One should not necessarily
accept the procD.allometry result as “truth” and other models can be explored with procD.1lm. Examples
for more flexibile approaches to modeling allometry using procD.lm are provided below.

Example
Simple allometry

data(plethodon) # example dataset

Y.gpa <- gpagen(plethodon$land, print.progress = FALSE) # GPA-alignment
# make geomorph data frame

gdf <- geomorph.data.frame(Y.gpa, site = plethodon$site,

species = plethodon$species)

plethAllometry <- procD.allometry(coords~Csize, f2 = NULL, £3=NULL,

logsz = TRUE, data=gdf, iter=249, print.progress = FALSE)

Allometry Model
summary (plethAllometry) # results identical to procD.lm

Call:
procD.allometry(f1 = coords ~ Csize, £2 = NULL, logsz = TRUE,
iter = 249, print.progress = FALSE, data = gdf, £3 = NULL)
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Type I (Sequential) Sums of Squares and Cross-products
Randomized Residual Permutation Procedure Used
250 Permutations

Df SS MS Rsq F Z Pr(>F)
log(size) 1 0.008894 0.0088940 0.045161 1.7973 1.3743 0.08 .
Residuals 38 0.188046 0.0049486
Total 39 0.196940

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Obtaining size-adjusted residuals (and allometry-free shapes)

plethAnova <- procD.lm(plethAllometry$formula,
data = plethAllometry$data, iter = 499,
RRPP=TRUE, print.progress = FALSE)
summary (plethAnova) # same ANOVA Table

Call:
procD.1m(f1 = plethAllometry$formula, iter = 499, RRPP = TRUE,
data = plethAllometry$data, print.progress = FALSE)

Type I (Sequential) Sums of Squares and Cross-products
Randomized Residual Permutation Procedure Used
500 Permutations

Df SS MS Rsq F Z Pr(>F)
log(size) 1 0.008894 0.0088940 0.045161 1.7973 1.2653 0.112
Residuals 38 0.188046 0.0049486
Total 39 0.196940

# save size-adjusted residuals an make as 3D array
shape.resid <- arrayspecs(plethAnova$residuals,

p=dim(Y.gpa$coords) [1], k=dim(Y.gpa$coords) [2]) # size-adjusted residuals
# make allometry-free shapes
adj.shape <- shape.resid + array(Y.gpa$consensus, dim(shape.resid))
plotTangentSpace(adj.shape) # PCA of allometry-free shape
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PC Summary
Importance of first k=20 (out of 24) components:
PC1 PC2 PC3 PC4 PC5 PC6
Standard deviation 0.04303 0.03781 0.01986 0.01492 0.01314 0.01291

Proportion of Variance 0.38396 0.29650 0.08181 0.04618 0.03579 0.03458
Cumulative Proportion 0.38396 0.68046 0.76227 0.80845 0.84424 0.87882
PC7 PC8 PC9 PC10 PC11 PC12
Standard deviation 0.01217 0.009205 0.009017 0.00819 0.00724 0.00648
Proportion of Variance 0.03071 0.017570 0.016860 0.01391 0.01087 0.00871
Cumulative Proportion 0.90953 0.927100 0.943960 0.95787 0.96874 0.97745
PC13 PC14 PC15 PC16 PC17
Standard deviation 0.005112 0.004286 0.004155 0.003962 0.003687
Proportion of Variance 0.005420 0.003810 0.003580 0.003260 0.002820
Cumulative Proportion 0.982870 0.986680 0.990260 0.993520 0.996340
PC18 PC19 PC20
Standard deviation 0.003026 0.002242 0.001862
Proportion of Variance 0.001900 0.001040 0.000720
Cumulative Proportion 0.998240 0.999280 1.000000

6.4 Two-block partial least squares analysis for shape data (two.b.pls)

Function performs two-block partial least squares analysis to assess the degree of association between to
blocks of Procrustes-aligned coordinates (or other variables) (see Rohlf and Corti 2000). To see the manual
page for this function, type ?geomorph: :two.b.pls.

Function

two.b.pls(Al, A2, iter = 999, seed = NULL, print.progress = TRUE)

Arguments

o A1 A 3D array (p x k x n) containing GPA-aligned coordinates, or a matrix (n x variables), for the
first block
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o A2 A 3D array (p x k x n) containing GPA-aligned coordinates, or a matrix (n x variables), for the
second block

e iter Number of iterations for significance testing

e seed An optional argument for setting the seed for random permutations of the resampling procedure.
If left NULL (the default), the exact same P-values will be found for repeated runs of the analysis (with
the same number of iterations). If seed = “random”, a random seed will be used, and P-values will vary.
One can also specify an integer for specific seed values, which might be of interest for advanced users.

o print.progress A logical value to indicate whether a progress bar should be printed to the screen. This
is helpful for long-running analyses

NOTE: This function can also be used with non-shape, multivariate data in Al or A2 (e.g. a set of iterlandmark
distances, a.k.a. linear measurements, or ecological variables).

Example
2B-PLS between plethodon head shape and food use data

data(plethShapeFood) # example dataset
Y.gpa<-gpagen(plethShapeFood$land, print.progress = FALSE) # GPA-alignment
PLS <-two.b.pls(Y.gpa$coords, plethShapeFood$food,
iter=999, print.progress = FALSE)
summary (PLS) # Test summary

Call:
two.b.pls(Al = Y.gpa$coords, A2 = plethShapeFood$food, iter = 999,
print.progress = FALSE)

r-PLS: 0.759
P-value: 0.001

Based on 1000 random permutations

plot(PLS) # PLS plot
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PLS1 Plot: Block 1 (X) vs. Block 2 (Y)

—-0.10 -0.05 0.00 0.05

6.5 Helper function: compare.pls

The function statistically compares the effect sizes of two or more PLS analyses. Typically, this function
might be used to compare levels of integration between two or more samples, each measuring morphological
integration between different modules. In such cases, the PLS correlation coefficient, r, is not a good measure
of integration effect, as its expected value is dependent on both the number of specimens and number of
variables (Adams and Collyer 2016). This analysis calculates effect sizes as standard deviates, z, and performs
two-sample z-tests, using the pooled standard error from the sampling distributions of the PLS analyses.

Function

compare.pls(...)

Arguments
e ... saved analyses of class, “pls”

To use this function, simply perform two.b.pls, integration.test, or phylo.integration on as many
samples as desired. Any number of objects of class “pls” can be input.

Example
Example of comparative morphological integration between pupfish head and body shapes

data(pupfish) # GPA previously performed
# define the groups

group <- factor(paste(pupfish$Pop, pupfish$Sex, sep = "."))
levels(group)
[1] "Marsh.F" "Marsh.M" "Sinkhole.F" "Sinkhole.M"
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# subset shape data by body part

tail.LM <- c(1:3, 5:9, 18:38)

head.LM <- (1:56) [-tail.LM]

tail.coords <- pupfish$coords[tail.LM, , ]
head.coords <- pupfish$coords[head.LM, , ]

# Subset 3D array by group, returning a list of 3D arrays

tail.coords.gp <- coords.subset(tail.coords, group)

head.coords.gp <- coords.subset (head.coords, group)

integ.tests <- Map(function(x, y) integration.test(x, y, iter = 499,
print.progress = FALSE),
head.coords.gp, tail.coords.gp)

# the map function performs the integration test on each 3D array

# in the lists provided

# View the results

integ.tests$Marsh.F

Call:
integration.test(A = x, A2 = y, iter = 499, print.progress = FALSE)

r-PLS: 0.92
P-value: 0

Based on 500 random permutations

integ.tests$Marsh.M

Call:
integration.test(A = x, A2 = y, iter = 499, print.progress = FALSE)

r-PLS: 0.79
P-value: 0.06

Based on 500 random permutations

integ.tests$Sinkhole.F

Call:

integration.test(A = x, A2 = y, iter = 499, print.progress = FALSE)

r-PLS: 0.76
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P-value: 0.24

Based on 500 random permutations

integ.tests$Sinkhole.M

Call:
integration.test(A = x, A2 = y, iter = 499, print.progress = FALSE)

r-PLS: 0.91
P-value: O

Based on 500 random permutations
# Perform test

group.Z <- compare.pls(integ.tests)
summary (group.Z)

Effect sizes

Marsh.F Marsh.M Sinkhole.F Sinkhole.M
3.2493074 1.5603308 0.7232586 3.4197781

Effect sizes for pairwise differences in PLS effect size

Marsh.F Marsh.M Sinkhole.F Sinkhole.M

Marsh.F 0.0000000 1.1836836 1.7628612 0.5225316
Marsh.M 1.1836836 0.0000000 0.5829786 1.6009240
Sinkhole.F 1.7628612 0.5829786 0.0000000 2.1294210
Sinkhole.M 0.5225316 1.6009240 2.1294210 0.0000000
P-values

Marsh.F Marsh.M Sinkhole.F Sinkhole.M
Marsh.F 1.00000000 0.11826916 0.03896195 0.30065011
Marsh.M 0.11826916 1.00000000 0.27995385 0.05469688
Sinkhole.F 0.03896195 0.27995385 1.00000000 0.01660972
Sinkhole.M 0.30065011 0.05469688 0.01660972 1.00000000

# Result: Sexual dimorphism in morphological integration in one population
# but not the other

# can also list different PLS analyses, separately
compare.pls(MF = integ.tests$Marsh.F, MM = integ.tests$Marsh.M)

Effect sizes

MF MM
3.249307 1.560331
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Effect sizes for pairwise differences in PLS effect size

MF MM
MF 0.000000 1.183684
MM 1.183684 0.000000

P-values
MF MM

MF 1.0000000 0.1182692
MM 0.1182692 1.0000000

7 Morphological Integration methods

Morphological integration is the tendancy of morphological traits to vary in a coordinated manner, and usually
studied through testing the strength of covariation between two or more sets of traits. The related concept,
modularity, is when an orgnaism’s structure is compartmentalized, and can be analyzed in a variety of ways.
geomorph presents a few of the recent methods in studing morphological integration and modularity in
high-dimensional data. Suggested reading on the subject: Klingenberg 2008, Klingenberg 2014, Mitteroecker
& Bookstein 2007 and references therein.

7.1 Quantify morphological integration between two modules (integration.test)

Function quantifies the degree of morphological integration between modules of Procrustes-aligned coordinates,
using a two-block partial least squares analysis (PLS). To see the manual page for this function, type
?geomorph: :integration.test. (Formerly known as morphol.integr).

Function

integration.test(A, A2 = NULL, partition.gp = NULL, iter = 999, seed = NULL, print.progress = TRUE)

Arguments

e A A 3D array (p x k x n) containing GPA-aligned coordinates of all specimens, or a matrix (n x
variables)

e A2 Optional 3D array containing GPA-aligned coordinates, or 2D matrix, for the second partition

o partition.gp A vector describing which landmarks (or variables) belong in which partition
(e.g. A,A,AB,B,B,C,C,C) (required when only A is provided)

e iter Number of iterations for significance testing

e seed An optional argument for setting the seed for random permutations of the resampling procedure.
If left NULL (the default), the exact same P-values will be found for repeated runs of the analysis (with
the same number of iterations). If seed = “random”, a random seed will be used, and P-values will vary.
One can also specify an integer for specific seed values, which might be of interest for advanced users.

e print.progress A logical value to indicate whether a progress bar should be printed to the screen. This
is helpful for long-running analyses

Example
Test for morphological integration between plethodon skull and mandible shape

data(plethodon) # example dataset

Y.gpa<-gpagen(plethodon$land, print.progress = FALSE) # GPA-alignment

# landmarks on the skull and mandible assigned to partitions B and A reseptively
land.gps<—c("A", "A",TAT, AN AN BT UBY,UB"Y,"B","B","B","B")
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IT <- integration.test(Y.gpa$coords, partition.gp=land.gps,
iter=999, print.progress = FALSE)
summary (IT) # Test summary

Call:
integration.test(A = Y.gpa$coords, partition.gp = land.gps, iter = 999,
print.progress = FALSE)

r-PLS: 0.911
P-value: 0.001

Based on 1000 random permutations

plot (IT) # PLS plot

PLS1 Plot: Block 1 (X) vs. Block 2 (Y)
[ J
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7.2 Compare modular signal to alternative landmark subsets (modularity.test)

Function quantifies the degree of modularity between two or more hypothesized modules of Procrustes-aligned
landmark coordinates and compares this to patterns found by randomly assigning landmarks into subsets
(Adams 2016). To see the manual page for this function, type ?geomorph: :modularity.test. (Formerly
known as compare.modular.partitions).

Function

modularity.test(A, partition.gp, iter = 999, CI = FALSE, seed = NULL, print.progress = TRUE)

Arguments

o A A 3D array (p x k x n) containing GPA-aligned coordinates of all specimens, or a matrix (n x
variables)
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o partition.gp A vector describing which landmarks (or variables) belong in which partition
(e.g. AJAJAB,BB,C,C,C)

e iter Number of iterations for significance testing

e CI A logical argument indicating whether bootstrapping should be used for estimating confidence
intervals

e seed An optional argument for setting the seed for random permutations of the resampling procedure.
If left NULL (the default), the exact same P-values will be found for repeated runs of the analysis (with
the same number of iterations). If seed = “random”, a random seed will be used, and P-values will vary.
One can also specify an integer for specific seed values, which might be of interest for advanced users

o print.progress A logical value to indicate whether a progress bar should be printed to the screen. This
is helpful for long-running analyses

Example
Test for morphological integration between plethodon skull and mandible shape

data(pupfish) # example dataset

Y.gpa<-gpagen(pupfish$coords, print.progress = FALSE) # GPA-alignment

# Define landmarks on the body (a) and operculum (b)

land.gps<-rep('a',56); land.gps[39:48]<-'b'

MT <- modularity.test(Y.gpa$coords,land.gps,CI=FALSE,iter=499, print.progress = FALSE)
summary (MT) # Test summary

Call:
modularity.test(A = Y.gpa$coords, partition.gp = land.gps, iter = 499,
CI = FALSE, print.progress = FALSE)

CR: 0.908
P-value: 0.016

Based on 500 random permutations
plot(MT) # Histogram of CR sampling distribution

Observed CR = 0.908 ; P-value = 0.016
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7.2.1 Helper function: define.modules

Function takes a matrix of digitized landmark coordinates and allows user assign landmarks to each module.
The output is a list of which landmarks belong in which partition, to be used by modularity.test of
integration.test option partition.gp.

Function

define.modules(spec, nmodules)

Arguments

o spec A p x k matrix containing landmark coordinates of a single specimen (2D or 3D)
e nmodules Number of modules to be defined

7.2.1.1 Selection in 2D

Choosing which landmarks will be included in each module involves landmark selection using a mouse in the
plot window. The user is prompted to select each landmark in turn to be assigned to module 1: using the
LEFT mouse button (or regular button for Mac users), click on the hollow circle to choose the landmark.
Selected landmarks will be filled in. When all landmarks for module 1 are chosen, press ‘esc’, and then start
selecting landmarks for module 2. Repeat until all modules are defined.

7.2.1.2 Selection in 3D

Choosing which landmarks will be included in each module involves landmark selection using a mouse in the
rgl plot window. The user is prompted to select one or more landmarks. To do so, use the RIGHT mouse
button (or command + LEFT button for Mac users), draw a rectangle around one or more landmarks to
select. Selected landmarks will be colored yellow. Then type into the console a letter (e.g. 1, 2, 3...) to
assign selected landmark(s) to this module. Repeat until all landmarks are assigned to modules.

# using first specimen of plethodon dataset
partition.gp <- define.modules(plethodon$landl[,,1], 2)
Select landmarks in module 1

Press esc when finished

Select landmarks in module 2
Press esc when finished

partition.gp
[1] II1|I l|1|l I|1ll |11ll |l1l| ll2ll ll2|l l|2ll l|2ll |l2ll |l2l| ll2ll

8 Phylogenetic Comparative methods

The following methods allow users to take phylogenetic non-independence into account during the analysis of
multivariate datasets.

All of these functions require a phylogenetic tree of class phylo - see 7ape: :read.tree (optional). The tree
must have number of tips equal to number of taxa in the data matrix (e.g., ?ape: :drop.tip). And, tip
labels of the tree MUST be exactly the same as the taxa names in the landmark data matrix (check using
match). To learn more about phylogenetic trees in R, look at these resources: http://www.r-phylo.org/wiki/
and http://bodegaphylo.wikispot.org/Phylogenetics__and__Comparative_ Methods_in_R
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8.1 Assessing phylogenetic signal in morphometric data (physignal)

Function calculates the degree of phylogenetic signal from a set of Procrustes-aligned specimens. The degree
of phylogenetic signal in data is estimated using the multivariate version of the K-statistic (Kmult: Adams
2014). This value evaluates the degree of phylogenetic signal in a dataset relative to what is expected under
a Brownian motion model of evolution. For geometric morphometric data, the approach is a mathematical
generalization of the Kappa statistic (Blomberg et al. 2003) appropriate for highly multivariate data (see
Adams 2014). Significance testing is found by permuting the shape data among the tips of the phylogeny.
Note that this method can be quite slow as ancestral states must be estimated for every iteration. To see the
manual page for this function, type ?geomorph: :physignal.

Function

physignal(A, phy, iter = 999, seed = NULL, print.progress = TRUE)

Arguments

e A A 3D array (p x k x n) containing GPA-aligned coordinates of all specimens, or a matrix (n x
variables)

o phy A phylogenetic tree of class phylo - see ?ape: :read.tree (optional)

e iter Number of iterations for significance testing

e seed An optional argument for setting the seed for random permutations of the resampling procedure.
If left NULL (the default), the exact same P-values will be found for repeated runs of the analysis (with
the same number of iterations). If seed = “random”, a random seed will be used, and P-values will vary.
One can also specify an integer for specific seed values, which might be of interest for advanced users

e print.progress A logical value to indicate whether a progress bar should be printed to the screen. This
is helpful for long-running analyses

Example
Test for phylogenetic signal in plethodon head shape

data(plethspecies) # exzample dataset
Y.gpa<-gpagen(plethspecies$land, print.progress = FALSE) # GPA-alignment
PS.shape <- physignal(A=Y.gpa$coords,phy=plethspecies$phy,
iter=999, print.progress = FALSE)
summary (PS.shape) # Test summary

Call:
physignal(A = Y.gpa$coords, phy = plethspecies$phy, iter = 999,
print.progress = FALSE)

Observed Phylogenetic Signal (K): 0.9573
P-value: 0.011

Based on 1000 random permutations

plot (PS.shape) # Histogram
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Observed K = 0.957 ; P-value = 0.011
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Phylogenetic Signal, K
Test for phylogenetic signal in plethodon head size

PS.size <- physignal (A=Y.gpa$Csize,phy=plethspecies$phy,
iter=999, print.progress = FALSE)
summary (PS.size) # Test summary

Call:
physignal(A = Y.gpa$Csize, phy = plethspecies$phy, iter = 999,
print.progress = FALSE)

Observed Phylogenetic Signal (K): 0.7098
P-value: 0.497

Based on 1000 random permutations
plot(PS.size) # Histogram

Observed K = 0.71 ; P-value = 0.497
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8.2 Quantify phylogenetic morphological integration between two sets of vari-
ables (phylo.integration)

Function quantifies the degree of phylogenetic morphological covariation between two or more sets of
Procrustes-aligned coordinates using partial least squares. The degree of morphological covariation is
estimated between two or sets of variables while accounting for phylogeny using partial least squares (Adams
and Felice 2014), and under a Brownian motion model of evolution. If more than two partitions are defined,
the average pairwise PLS correlation is utilized as the test statistic. The observed value is statistically assessed
using permutation, where data for one partition are permuted relative to the other partitions. Note that
this permutation is performed on phylogenetically- transformed data, so that the probability of phylogenetic
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association of A vs. B is similar to that of B vs. A: i.e., prob(A,B|phy)~prob(B,A|phy). (Formerly known as
phylo.pls). To see the manual page for this function, type ?geomorph: :phylo.integration.

Function

phylo.integration(A, A2 = NULL, phy, partition.gp = NULL, iter = 999,
seed = NULL, print.progress = TRUE)

Arguments

e A A 3D array (p x k x n) containing GPA-aligned coordinates of all specimens, or a matrix (n x
variables)

e A2 Optional 3D array containing GPA-aligned coordinates, or 2D matrix, for the second partition

o phy A phylogenetic tree of class phylo - see 7ape: :read.tree (optional)

o partition.gp A vector describing which landmarks (or variables) belong in which partition
(e.g. AJA,AB,B,B,C,C,C) (required when only A is provided)

e iter Number of iterations for significance testing

e seed An optional argument for setting the seed for random permutations of the resampling procedure.
If left NULL (the default), the exact same P-values will be found for repeated runs of the analysis (with
the same number of iterations). If seed = “random”, a random seed will be used, and P-values will vary.
One can also specify an integer for specific seed values, which might be of interest for advanced users

e print.progress A logical value to indicate whether a progress bar should be printed to the screen. This
is helpful for long-running analyses

Example
Test for phylogentic morphological integration between plethodon cranium and mandible shape

data(plethspecies) # ezample dataset

Y.gpa<-gpagen(plethspecies$land, print.progress = FALSE) # GPA-alignment

# landmarks on the skull and mandible assigned to partitions B and A reseptively

land.gps<-c("A","A", A", A" "AM "B, "B","B","B","B","B")

IT<- phylo.integration(Y.gpa$coords,partition.gp=1land.gps, phy=plethspecies$phy,
iter=999, print.progress = FALSE)

summary (IT) # Test summary

Call:
phylo.integration(A = Y.gpa$coords, phy = plethspecies$phy, partition.gp = land.gps,
iter = 999, print.progress = FALSE)

r-PLS: 0.933
P-value: 0.023

Based on 1000 random permutations

plot(IT) # PLS plot
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PLS1 Plot: Block 1 (X) vs. Block 2 (Y)
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8.3 Comparing rates of shape evolution on phylogenies (compare.evol.rates)

Function calculates rates of shape evolution for two or more groups of species on a phylogeny from a set of
Procrustes-aligned specimens, under a Brownian motion model of evolution. The approach is based on the
distances between species in morphospace after phylogenetic transformation (Adams 2014). From the data
the rate of shape evolution for each group is calculated, and a ratio of rates is obtained. If three or more
groups of species are used, the ratio of the maximum to minimum rate is used as a test statistic (see Adams
2014). Significance testing is accomplished by phylogenetic simulation in which tips data are obtained under
Brownian motion using a common evolutionary rate pattern for all species on the phylogeny. Specifically,
the common evolutionary rate matrix for all species is used, with the multi-dimensional rate used along the
diagonal elements (see Denton and Adams 2015). This procedure is more general than the original simulation
procedure, and retains the desirable statistical properties of earlier methods, and under a wider array of data
types. If three or more groups of species are used, pairwise p-values are also calculated. The function can be
used to obtain a rate for the whole dataset of species by using a dummy group factor assigning all species to
one group. To see the manual page for this function, type ?geomorph: : compare.evol.rates.

Function

compare.evol.rates(A, phy, gp, iter = 999, print.progress = TRUE)

Arguments

o A A 3D array (p x k x n) containing GPA-aligned coordinates of all specimens, or a matrix (n x
variables)

o phy A phylogenetic tree of class phylo - see 7ape: :read.tree (optional)

e gp A factor describing group membership

e iter Number of iterations for significance testing
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o print.progress A logical value to indicate whether a progress bar should be printed to the screen. This
is helpful for long-running analyses

Example
Test for phylogentic morphological integration between plethodon cranium and mandible shape

data(plethspecies) # exzample dataset

Y.gpa<-gpagen(plethspecies$land, print.progress = FALSE) # GPA-alignment

# group factor endangered species vs. rest

gp.end<-factor(c(0,0,1,0,0,1,1,0,0))

names (gp.end) <-plethspecies$phy$tip

ER<-compare.evol.rates(A=Y.gpa$coords, phy=plethspecies$phy, gp=gp.end,
iter=999, print.progress = FALSE)

summary (ER) # Test summary

Call:

Observed Rate Ratio: 1.8372

P-value: 0.323

Based on 1000 random permutations

The rate for group 0 is 1.79641754369177e-06

The rate for group 1 is 3.30041235292046e-06
plot(ER) # Histogram

Observed Rate Ratio = 1.8372 ; P-value = 0.323
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8.4 Comparing rates of shape evolution among traits on phylogenies
(compare.multi.evol.rates)

Function compares rates of morphological evolution for two or more multi-dimensional traits on a phylogeny,
under a Brownian motion model of evolution following the procedure of Denton and Adams (2015). The
approach calculates multivariate evolutionary rates found from the distances between species in morphospace
after phylogenetic transformation (sensu Adams 2014). From the data the rate of shape evolution for each
multi-dimensional trait is calculated, and a ratio of rates is obtained. If three or more traits are used, the
ratio of the maximum to minimum rate is used as a test statistic (see Denton and Adams 2015). Significance
testing is accomplished by phylogenetic simulation in which tips data are obtained under Brownian motion
using a an evolutionary rate matrix for all traits, which contains a common rate for all trait dimensions
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(Denton and Adams 2015). If three or more traits are used, pairwise p-values are also returned. To see the
manual page for this function, type ?geomorph: : compare.multi.evol.rates.

Function

compare.multi.evol.rates(A, gp, phy, Subset = TRUE, iter = 999, print.progress = TRUE)

Arguments

e A A 3D array (p x k x n) containing GPA-aligned coordinates of all specimens, or a matrix (n x
variables)

e gp A factor describing group membership

o phy A phylogenetic tree of class phylo - see 7ape: :read.tree (optional)

e Subset A logical value indicating whether or not the traits are subsets from a single landmark configu-
ration (default is TRUE)

e iter Number of iterations for significance testing

e print.progress A logical value to indicate whether a progress bar should be printed to the screen. This
is helpful for long-running analyses

Comparisons of evolutionary rates between traits may be accomplished in one of two ways. First, if the
traits are are part of a single shape that was subjected to a single Procrustes superimposition (i.e., they are
subsets of landmarks in the configuration), then the procedure is performed without alteration as described
above (Subset = TRUE). However, if the shapes are derived from different structures (shapes) that were
superimposed separately, then the estimates of the rates must take the difference in the number of trait
dimensions into account (see discussion in Denton and Adams 2015). This option is identified by selecting
Subset = FALSE.

Example
Test for phylogentic morphological integration between plethodon cranium and mandible shape

data(plethspecies) # ezample dataset
Y.gpa<-gpagen(plethspecies$land, print.progress = FALSE) # GPA-alignment
# landmarks on the skull and mandible assigned to partitions B and A reseptively
land.gps<-c("A","A","A", MAN WAM WBH uBH wBu uwBn upn npu)
EMR<-compare.multi.evol.rates(A=Y.gpa$coords,gp=land.gps,

Subset=TRUE, phy= plethspecies$phy, iter=999, print.progress = FALSE)
summary (EMR) # Test summary

Call:

Observed Rate Ratio: 1.2997

P-value: 0.507

Based on 1000 random permutations

The rate for group A is 1.97486480473745e-06

The rate for group B is 2.56681943179345e-06
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plot(EMR) # Histogram
Observed Rate Ratio = 1.2997 ; P-value = 0.507
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8.5 Phylogenetic ANOVA /regression for shape data (procD.pgls)

Function performs Procrustes ANOVA and regression models in a phylogenetic context under a Brownian mo-
tion model of evolution, in a manner that can accommodate high-dimensional datasets. The approach is derived
from the statistical equivalency between parametric methods utilizing covariance matrices and methods based
on distance matrices (Adams 2014). To see the manual page for this function, type ?geomorph: :procD.pgls.

Function

procD.pgls(fl, phy, iter = 999, seed = NULL, int.first = FALSE,
effect.type = c("F", "cohen"), RRPP = TRUE,
data = NULL, print.progress = TRUE, ...)

Arguments

o f1 A formula for the linear model (e.g., y~x1+x2)

e phy A phylogenetic tree of class phylo - see 7ape: :read.tree (optional)

e iter Number of iterations for significance testing

e seed An optional argument for setting the seed for random permutations of the resampling procedure.
If left NULL (the default), the exact same P-values will be found for repeated runs of the analysis (with
the same number of iterations). If seed = “random”, a random seed will be used, and P-values will vary.
One can also specify an integer for specific seed values, which might be of interest for advanced users

o ant.first A logical value to indicate if interactions of first main effects should precede subsequent main
effects

e effect.type One of “F” or “cohen”, to choose from which random distribution to estimate effect size.
(The default is “F”. The option, “cohen”, refers to Cohen’s f-squared values. Values are log-transformed
before z-score calculation to assure normally distributed effect sizes.)

e RRPP A logical value indicating whether residual randomization should be used for significance testing
(see Introduction VI. Permutation tests)

e data A data frame for the function environment, see geomorph.data.frame

e ... Arguments passed on to procD.fit (typically associated with the 1m function)

e print.progress A logical value to indicate whether a progress bar should be printed to the screen. This
is helpful for long-running analyses

The function works in the same manner as procD.1lm.

Example
Testing for evolutionary allometry with a D-PGLS approach

data(plethspecies) # ezample dataset
Y.gpa<-gpagen(plethspecies$land, print.progress = FALSE) # GPA-alignment
gdf <- geomorph.data.frame(shape = Y.gpa$coords, cs = Y.gpa$Csize,

74



phy = plethspecies$phy) # make geomorph data frame

# permutation option 1: randomize raw values
procD.pgls(shape ~ log(cs), phy = phy, data = gdf, iter = 999, RRPP = FALSE,
print.progress = FALSE)

Call:
procD.pgls(fl = shape ~ log(cs), phy = phy, iter = 999, RRPP = FALSE,
data = gdf, print.progress = FALSE)

Type I (Sequential) Sums of Squares and Cross-products
Randomization of Raw Values used
1000 Permutations

Df SS MS Rsq F Z Pr(>F)
log(cs) 1 0.00006868 6.8679e-05 0.15096 1.2446 0.4356 0.333
Residuals 7 0.00038627 5.5182e-05
Total 8 0.00045495

# permutation option 1: randomize residuals
procD.pgls(shape ~ log(cs), phy = phy, data = gdf, iter = 999, RRPP = TRUE,
print.progress = FALSE)

Call:
procD.pgls(f1 = shape ~ log(cs), phy = phy, iter = 999, RRPP = TRUE,
data = gdf, print.progress = FALSE)

Type I (Sequential) Sums of Squares and Cross-products
Randomized Residual Permutation Procedure Used
1000 Permutations

Df SS MS Rsq F Z Pr(>F)
log(cs) 1 0.00006868 6.8679e-05 0.15096 1.2446 0.4356 0.333
Residuals 7 0.00038627 5.5182e-05
Total 8 0.00045495

9 Other methods

9.1 Calculate morphological disparity for one or more groups (morphol.disparity)

Function estimates morphological disparity and performs pairwise comparisons among groups. Morphological
disparity is a measure of variance in morphological traits. Disparity of landmark-based data is usually
measured using the Procrustes Variance, the sum of the diagonal elements of the group covariance matrix.
Of course many other methods exist for measuring disparity, but we will not discuss them here. To see the
manual page for this function, type ?geomorph: :morphol.disparity.

Function

morphol.disparity(f1, groups = NULL, iter = 999, seed = NULL,
data = NULL, print.progress = TRUE ...)

Arguments
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e f1 f1 A formula describing the linear model used. The left-hand portion of the formula should be a 3D
array (p x k x n) containing GPA-aligned coordinates for a set of specimens, or a matrix (n x variables).
The right-hand portion of the formula should be " ~1" to use the overall mean, or “~ x1 + x2 + x3
+...7, where each x is a covariate or factor. (Interactions and nested terms also work.)

e groups A formula designating groups, e.g., groups = ~ groups. If NULL, morphol.disparity will
attempt to define groups based on the linear model formula, £1. If there are no groups inherently
indicated in £1 and groups is NULL, a single Procrustes variance will be returned for the entire data
set.

e iter Number of iterations for permutation test

e seed An optional argument for setting the seed for random permutations of the resampling procedure.
If left NULL (the default), the exact same P-values will be found for repeated runs of the analysis (with
the same number of iterations). If seed = “random”, a random seed will be used, and P-values will vary.
One can also specify an integer for specific seed values, which might be of interest for advanced users.

o data A data frame for the function environment, see geomorph.data.frame

o print.progress A logical value to indicate whether a progress bar should be printed to the screen. This
is helpful for long-running analyses

e ... Arguments passed on to procD.fit (typically associated with the 1m function)

Example

data(plethodon) # exzample dataset
Y.gpa<-gpagen(plethodon$land, print.progress = FALSE) # GPA-alignment
gdf <- geomorph.data.frame(shape = Y.gpa$coords,
site = plethodon$site, species = plethodon$species) # make geomorph data frame

# Morphological disparity for entire data set
morphol.disparity(shape ~ 1, groups= NULL, data = gdf, iter=999,
print.progress = FALSE)

No factor in formula from which to define groups.
Procrustes variance:

[1] 0.004923493

# Morphological disparity without covariates, using overall mean
morphol.disparity(shape ~ 1, groups= ~ species*site, data = gdf, iter=999,
print.progress = FALSE)

Call:
morphol .disparity(f1 = shape ~ 1, groups = ~species * site, iter = 999,
data = gdf, print.progress = FALSE)

Randomized Residual Permutation Procedure Used
1000 Permutations

Procrustes variances for defined groups
Jord:Allo  Jord:Symp Teyah:Allo Teyah:Symp
0.003825240 0.005937274 0.003355765 0.006575694

Pairwise absolute differences between variances
Jord:Allo Jord:Symp Teyah:Allo  Teyah:Symp
Jord:Allo 0.0000000000 0.0021120344 0.0004694746 0.0027504546
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Jord:Symp 0.0021120344 0.0000000000 0.0025815091 0.0006384202
Teyah:Allo 0.0004694746 0.0025815091 0.0000000000 0.0032199292
Teyah:Symp 0.0027504546 0.0006384202 0.0032199292 0.0000000000

P-Values

Jord:Allo Jord:Symp Teyah:Allo Teyah:Symp
Jord:Allo 1.000 0.020 0.617 0.002
Jord:Symp 0.020 1.000 0.001 0.512
Teyah:Allo 0.617 0.001 1.000 0.001
Teyah:Symp 0.002 0.512 0.001 1.000

# Morphological disparity without covariates, using group means
morphol.disparity(shape ~ species*site, groups= ~species*site, data = gdf, iter=999,
print.progress = FALSE)

Call:
morphol.disparity(f1 = shape ~ species * site, groups = ~species *
site, iter = 999, data = gdf, print.progress = FALSE)

Randomized Residual Permutation Procedure Used
1000 Permutations

Procrustes variances for defined groups
Jord:Allo Jord:Symp Teyah:Allo Teyah:Symp
0.001933408 0.001790153 0.001732997 0.001785645

Pairwise absolute differences between variances

Jord:Allo Jord:Symp Teyah:Allo  Teyah:Symp
Jord:Allo 0.0000000000 1.432545e-04 2.004103e-04 1.477632e-04
Jord:Symp 0.0001432545 0.000000e+00 5.715581e-05 4.508733e-06
Teyah:Allo 0.0002004103 5.715581e-05 0.000000e+00 5.264707e-05
Teyah:Symp 0.0001477632 4.508733e-06 5.264707e-05 0.000000e+00

P-Values

Jord:Allo Jord:Symp Teyah:Allo Teyah:Symp
Jord:Allo 1.000 0.655 0.556 0.661
Jord:Symp 0.655 1.000 0.859 0.986
Teyah:Allo 0.556 0.859 1.000 0.872
Teyah:Symp 0.661 0.986 0.872 1.000

9.2 Quantify and compare shape change trajectories (trajectory.analysis)

Function quantifies phenotypic shape change trajectories from a set of specimens, and assesses variation in
attributes of the trajectories via permutation. A shape change trajectory is defined by a sequence of shapes in
tangent space. These trajectories can be quantified for various attributes (their size, orientation, and shape),
and comparisons of these attribute enable the statistical comparison of shape change trajectories (see Collyer
and Adams 2013; Collyer and Adams 2007; Adams and Collyer 2007; Adams and Collyer 2009). To see the
manual page for this function, type ?geomorph: :trajectory.analysis.
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Function

trajectory.analysis(f1, f2 = NULL, iter = 999, seed = NULL,
traj.pts = NULL, data = NULL, print.progress = TRUE, ...)

Arguments

o f1 A formula for the linear model, for trajectories (e.g., Y ~ Aor Y ~ A * B). The right hand side of
this formula can contain only one or two factors

o f2 A formula for additional covariates (e.g., ~ x1 + x2)

e jter Number of iterations for permutation test

e seed An optional argument for setting the seed for random permutations of the resampling procedure.
If left NULL (the default), the exact same P-values will be found for repeated runs of the analysis (with
the same number of iterations). If seed = “random”, a random seed will be used, and P-values will vary.
One can also specify an integer for specific seed values, which might be of interest for advanced users.

e traj.pts An optional value specifying the number of points in each trajectory (if f1 contains a single
factor)

e data A data frame for the function environment, see geomorph.data.frame

o print.progress A logical value to indicate whether a progress bar should be printed to the screen. This
is helpful for long-running analyses

e ... Arguments passed on to procD.fit (typically associated with the 1m function)

Data input is specified by a two formulae (e.g., Y ~ X), where ‘Y’ specifies the response variables (trajectory
data), and ‘X’ contains one or more independent variables (discrete or continuous). The response matrix ‘Y’
can be either in the form of a two-dimensional data matrix of dimension (n x [p x k]), or a 3D array (p x n x
k). It is assumed that the order of the specimens ‘Y’ matches the order of specimens in ‘X"

Linear model fits (using the 1m function) can also be input in place of a formula. Arguments for 1m can also
be passed on via this function. The first formula, f1, must contain the independent variable on the left-hand
side of the formula (e.g., Y ~) and either a single factor or a two factor interaction on the right-hand side.

If a single factor is provided, e.g., Y ~ A, it is assumed that groups to be described are the levels of factor A
and that the data in Y comprise trajectories. In this case, the traj.pts = NULL argument must be changed
to a numeric value to define the number of points in the trajectory. It is also assumed that the data are
structured as variables within points. For example, y11 y21 y31 y12 y22 y32 y13 y23 y33 y14 y24 y34 would
be columns of a matrix, Y, describing a 4-point trajectory in a data space defined by three variables. This is
the proper arrangement; the following is an improper arrangement: y11 y12 y13 y14 y21 y22 y23 y24 y31 y32
y33 y34, as it groups points within variables. This approach is typical when comparing motion paths (see
Adams and Cerney 2007).

Example # Motion paths represented by 5 time points per motion

data(motionpaths) # Simulated motion paths

gdf <- geomorph.data.frame(trajectories = motionpaths$trajectories,
groups = motionpaths$groups)

TA <- trajectory.analysis(fl = trajectories ~ groups,

traj.pts = 5, data=gdf, iter=199, print.progress = FALSE)

summary (TA)

trajectory.analysis(fl = trajectories ~ groups, iter = 199, traj.pts = 5,
data = gdf, print.progress = FALSE)

Type I (Sequential) Sums of Squares and Cross-products
Randomized Residual Permutation Procedure Used
200 Permutations
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Df SS MS Rsq F Z Pr(>F)

groups 3 6520.9 2173.63 0.98608 849.85 8.3797 0.005 **
Residuals 36 92.1 2.56

Total 39 6613.0

Signif. codes: 0 '#*x' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Pairwise statistical results:

*x* Path Distances

Observed Path Distances
1 2 3 4
10.144421 6.557011 10.949722 10.097348

Pairwise Absolute Differences Between Path Distances
1 2 3 4

1 0.00000000 3.587410 0.8053008 0.04707265
2 3.58741011 0.000000 4.3927109 3.54033746
3 0.80530081 4.392711 0.0000000 0.85237346
4 0.04707265 3.540337 0.8523735 0.00000000

Effect Sizes
1 2 3 4

1 0.0000000 6.062112 0.5174543 -1.2512584
2 6.0621124 0.000000 8.0030824 6.6722934
3 0.5174543 8.003082 0.0000000 0.6235063
4 -1.2512584 6.672293 0.6235063 0.0000000
P-Values

1 2 3 4
1 1.000 0.005 0.235 0.955
2 0.005 1.000 0.005 0.005
3 0.235 0.005 1.000 0.265
4 0.955 0.005 0.265 1.000

*x*% Principal Vector Correlations

Pairwise Correlations

1 2 3 4
1 1.0000000 0.9989147 0.6122502 0.9996899
2 0.9989147 1.0000000 0.6484120 0.9974452
3 0.6122502 0.6484120 1.0000000 0.5923727
4 0.9996899 0.9974452 0.5923727 1.0000000

Effect Sizes

1 2 3 4
1 0.0000000 -0.9361053 5.594340 -1.1182119
2 -0.9361053 0.0000000 5.405341 -0.7656184
3 5.5943396 5.4053407 0.000000 6.3543967
4 -1.1182119 -0.7656184 6.354397 0.0000000
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P-Values

1 2 3 4
1 1.000 0.845 0.005 0.915
2 0.845 1.000 0.005 0.765
3 0.005 0.005 1.000 0.005
4 0.915 0.765 0.005 1.000

**x* Trajectory Shape Differences

Pairwise Shape Differences (Procrustes Distance)
1 2 3 4
1 0.0000000 0.10279471 0.10686382 0.2821303
2 0.1027947 0.00000000 0.07843294 0.3649111
3 0.1068638 0.07843294 0.00000000 0.3508621
4 0.2821303 0.36491114 0.35086211 0.0000000
Effect Sizes
1 2 3 4
1 0.0000000 -0.3456923 -0.2333463 3.703360
2 -0.3456923 0.0000000 -0.9193196 5.599389
3 -0.2333463 -0.9193196 0.0000000 6.095049
4 3.7033600 5.5993894 6.0950485 0.000000

0
3

1 2 3 4
1 1.000 0.610 0.545 0.005
2 0.610 1.000 0.800 0.005
3 0.545 0.800 1.000 0.005
4 0.005 0.005 0.005 1.000

# Various plotting examples
plot (TA)

Two Dimensional View of Phenotypic Trajectories
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plot(TA, group.cols = c("dark red", "dark blue", "dark green",
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Two Dimensional View of Phenotypic Trajectories
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plot(TA, group.cols = c("dark red", "dark blue", "dark green", "yellow"),
pt.seq.pattern = c("green", "gray30", "red"), pt.scale = 1.3)

Two Dimensional View of Phenotypic Trajectories
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10 DATA VISUALIZATION

The next 4 chapters will cover geomorph’s visualization functions, organized as follows (hyperlinks): ordination
graphs, shape change graphs, data inspection, and plots for analytical functions. Plotting of Procrustes shape
data requires many specialist plot functions that we have written to help users to quickly visuaalize their
data, and provide the necessary information for users to produce their own publication quality graphs. Many
of geomorph’s analytical functions decribed in Vigentte 3 return information in the form of a list that can
simply be used in the S3 generic function plot also.

11 Ordination graphs

11.1 Principal Components Analysis (plotTangentSpace)

Usually the first step in a geometric morphometrics study, a Principal Components Anlaysis (PCA) is an
ordination method to visualize the shape variation among individual specimens in the dataset. The function
plotTangentSpace plots a set of Procrustes-aligned specimens in tangent space along their principal axes,
i.e., function performs PCA.

Function

plotTangentSpace(A, axisl = 1, axis2 = 2, warpgrids = TRUE, mesh = NULL, label = FALSE,
groups = NULL, legend = FALSE)

Arguments

o A A 3D array (p x k x n) containing landmark coordinates for a set of aligned specimens

o warpgrids A logical value indicating whether deformation grids for shapes along X-axis should be
displayed

o mesh A mesh3d object to be warped to represent shape deformation along X-axis (when warp-
grids=TRUE) as described in warpRefMesh.

o azisl A value indicating which PC axis should be displayed as the X-axis (default = PC1)

o azis? A value indicating which PC axis should be displayed as the X-axis (default = PC2)

e label An optional vector indicating labels for each specimen are to be displayed (or if TRUE, numerical
addresses are given)

e groups An optional factor vector specifying group identity for each specimen

o legend A logical value for whether to add a legend to the plot (only when groups are assigned)

The function performs a principal components analysis of shape variation and plots two dimensions of tangent
space for a set of Procrustes-aligned specimens (default is PC1 vs. PC2). The percent variation along each
PC-axis is returned. Additionally (and optionally, warpgrids=T), deformation grids can be requested, which
display the shape of specimens at the ends of the range of variability along PC1. If groups are provided,
specimens from each group are plotted using distinct colors based on the order in which the groups are found
in the dataset, and using R’s standard color palette: black, red, green, blue, cyan, magenta, yellow, and gray,
which are recycled if there are more than 8 groups.

NOTE 1: to change the colors of the groups, simply substitute a vector of the desired colors for each specimen
(see example below).

NOTE 2: previous versions of plotTangentSpace had option ‘verbose’ to return the PC scores and PC shapes.
From version 3.0.2 this is automatic when assigned to an object.

Example

data(plethodon) # exzample dataset
Y.gpa<-gpagen(plethodon$land, print.progress = FALSE) # GPA-alignment
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gp <- as.factor(paste(plethodon$species, plethodon$site)) # create grouping wvariable
PCA <- plotTangentSpace(Y.gpa$coords, groups = gp, legend = TRUE)
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summary (PCA) # to see the timportance of the PC azes
PC Summary
Importance of first k=20 (out of 24) components:
PC1 PC2 PC3 PC4 PC5 PC6
Standard deviation 0.04307 0.03958 0.02035 0.01509 0.01314 0.01293
Proportion of Variance 0.36743 0.31023 0.08201 0.04512 0.03418 0.03312
Cumulative Proportion 0.36743 0.67767 0.75967 0.80479 0.83897 0.87209
PC7 PC8 PC9 PC10 PC11 PC12
Standard deviation 0.01245 0.01119 0.009202 0.008289 0.007369 0.006651
Proportion of Variance 0.03068 0.02478 0.016770 0.013600 0.010750 0.008760
Cumulative Proportion 0.90277 0.92755 0.944320 0.957920 0.968670 0.977430
PC13 PC14 PC15 PC16 PC17
Standard deviation 0.005116 0.004389 0.004173 0.004141 0.003944
Proportion of Variance 0.005180 0.003810 0.003450 0.003400 0.003080
Cumulative Proportion 0.982620 0.986430 0.989880 0.993280 0.996360
PC18 PC19 PC20
Standard deviation 0.003042 0.00231 0.00195
Proportion of Variance 0.001830 0.00106 0.00075
Cumulative Proportion 0.998190 0.99925 1.00000

To plot a graph of the proportion of variance explained by each PC:

pvar <- (PCA$sdev™2)/(sum(PCA$sdev™2))
names (pvar) <- seq(1l:length(pvar))
barplot(pvar, xlab= "Principal Components", ylab = "%, Variance")
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ProTip! To easily change colors of groups in plotTangentSpace

col.gp<-c(rep("black",10),rep("red",10),
rep("yellow",10) ,rep("orange",10)) # not a factor
plotTangentSpace(Y.gpa$coords, groups = col.gp, legend = TRUE)

# Or even more succinctly using a clever trick with the function match
col.gp <- rainbow(length(levels(gp))) # use rainbow function to gemerate colours
names (col.gp) <- levels(gp)
col.gp <- col.gp[match(gp, names(col.gp))]
plotTangentSpace(Y.gpa$coords, groups = col.gp, legend = TRUE)

The function also returns a list containing: the PC summary ($pc.summary), PC scores ($pc.scores) —
the latter of which can be used by plot to reproduce the graphs for publication — and the minimum and
maximum shapes ($pc.shapes) for all of the PCs, which can be used in plotRefToTarget. These shapes
and others can also be predicted using the function shape.predictor.

$pc.scores
PC1 PC2 PC3 PC4 PC5
[1,] -0.0369931316 0.051182469 -0.0016971188 -3.128812e-03 -0.0109363280
[2,] -0.0007493756 0.059420824 0.0001371746 -2.768676e-03 -0.0081174155

$pc.shapes
$pc.shapes$PCimin
[,1] [,2]

[1,] 0.16960517 -0.02807690
[2,] 0.21810341 -0.10340535

$pc.shapes$PClmax
[,1] [,2]
[1,] 0.14235007 -0.020486784
[2,] 0.18012044 -0.086122720
$pc.shapes$PC2min
[,1] [,2]
[1,] 0.13128088 -0.03616776
[2,] 0.18767216 -0.10979356

$pc . shapes$PC2max
[,1] [,2]
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[1,] 0.18546661 -0.003640617
[2,] 0.20487416 -0.066270202

11.1.1 Plotting convex hulls in a PC plot

When shape data are structured into groups, it may be necessary to plot convex hull polygons to show the
groups more clearly after PCA.

data(pupfish) # exzample dataset

# data already Procrustes Superimposed

# dataset needs dimnames for plotting polygons so we shall assign arbitirary names
dimnames (pupfish$coords) [[3]] <- paste("fish", 1:dim(pupfish$coords) [3], sep="")

PCA <- plotTangentSpace(pupfish$coords, groups = pupfish$Sex) # PCA
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plot (PCA$pc.scores[,c(1,2)], pch=19, asp=1) # make the plot by hand

# Add convex hull polygons to the PCA plot:
colour = c("black", "red") # colour for the two groups
for(j in 1:nlevels(pupfish$Sex)) {
# Get edge points (used to plot convexr hull):
edge_points <- rownames(PCA$pc.scores[which(pupfish$Sex == levels(pupfish$Sex) [j1),1)[
chull (PCA$pc.scores[which(pupfish$Sex == levels(pupfish$Sex) [j1), c(1,2)]1)]
# Plot convex hull as polygon:
polygon(PCA$pc.scores[edge_points, c(1,2)], col = adjustcolor(colour([j],
alpha.f = 0.3) , border = colour[j])
} # alpha gives the degree of transparency of the polygon
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11.2 Plot phylogenetic tree and specimens in tangent space (plotGMPhyloMorphoSpace)

Another common ordination method is to perform a Principal Components Analysis of species mean shape
data and the project a phylogenetic tree into this space, i.e., a phylomorphospace. Function creates a plot of
the principal dimensions of tangent space for a set of Procrustes-aligned specimens. Default is a plot of PC
axis 1 and 2. The phylogenetic tree for these specimens is superimposed in this plot revealing how shape
evolves (e.g., Rohlf 2002; Klingenberg and Gidaszewski 2010; Sidlauskas 2008). The plot also displays the
ancestral states for each node of the phylogenetic tree (analogous to from fastAnc from phytools), whose
values can optionally be returned. If a tree with branch lengths scaled by time is used, with the option zaxis
= “time”, the function plots a 3D phylomorphospace, with internal nodes positioned along the Z-axis scaled
to time (a.k.a. Chronophylomorphospace, Sakamoto & Ruta 2012).

Function

plotGMPhyloMorphoSpace(phy, A, tip.labels = TRUE, node.labels = TRUE,
ancStates = TRUE, xaxis = 1, yaxis = 2, zaxis = NULL,
plot.param = list(), shadow = FALSE)

Arguments

e phy A phylogenetic tree of class phylo - see read.tree in library ape

o A A matrix (n x [p x k]) or 3D array (p x k x n) containing GPA-aligned coordinates for a set of
specimens

o tip.labels A logical value indicating whether taxa labels (tips) should be included

o node.labels A logical value indicating whether node labels (ancestors) should be included

e ancStates FEither a logical value indicating whether ancestral state values should be returned, or a
matrix of ancestral states (i.e. calculated with fastAnc or ace)

o zazis A numeric value indicating which PC axis should be displayed as the X-axis (default = PC1)

o yaxis A numeric value indicating which PC axis should be displayed as the Y-axis (default = PC2)

o zazis Optional, a numeric value indicating which PC axis should be displayed as the Z-axis (e.g. PC3)
or if zaxis=“time”, internal nodes are plotted along the Z-axis relative to time

o plot.param A list of plotting parameters for the tips (t.bg, t.pch, t.cex), nodes (n.bg, n.pch, n.cex),
branches (1.col, lwd), taxa labels (txt.cex, txt.adj, txt.col) and node labels (n.txt.cex, n.txt.adj, n.txt.col)

o shadow A logical value indicating whether a 2D phylomorphospace should be plotted at the base when
zaxis="“time”
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data(plethspecies)

Y.gpa<-gpagen(plethspecies$land, print.progress = FALSE)

plotGMPhyloMorphoSpace (plethspecies$phy,Y.gpa$coords,
plot.param=1list(t.bg="blue",txt.col="red",n.cex=1),
ancStates = F)
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You can also plot a 3D phylomorphospace using the 3rd PC, e.g.,

plotGMPhyloMorphoSpace (plethspecies$phy,Y.gpa$coords, zaxis= 3,
plot.param=list(n.cex=2, n.bg="blue"), shadow=TRUE)
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Using the option zaxis = "time", the function plots a 3D phylomorphospace, with internal nodes positioned

along the Z-axis scaled to time (a.k.a. Chronophylomorphospace, Sakamoto & Ruta 2012).
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plotGMPhyloMorphoSpace (plethspecies$phy,Y.gpa$coords, zaxis= "time",

plot.param=list(n.cex=2, n.bg="blue"), shadow=TRUE)
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12 Shape change graphs

12.1 Shape prediction from numeric predictors (shape.predictor)

Function estimates one or more configurations based on one or more linear predictors, such as PC scores

allometric relationships, or any other least squares or partial least squares regression. These configurations can
be used with plotRefToTarget to generate graphical representations of shape change, based on prediction
criteria.

Function

shape.predictor(A, x = NULL, Intercept = FALSE, method = c("LS", "PLS"),...)
Arguments

o A An array (p x k x n) containing Procrustes residuals, either from GPA or fitted values from a previous
analytical procedure

o 1z Linear (numeric) predictors. Can be a vector or a matrix, or a list containing vectors or matrices.

Values must be numeric. If a factor is desired, one should use model.matrix to obtain a design matrix.
This will impact how prediction criteria need to be provided (see below)

e Intercept Logical value to indicate whether an intercept should be used in the linear equation for
predictions. Generally, this value will be FALSE for shape predictions made in ordination plots. It
should be TRUE in cases where the expected shape at the point the predictor has a value of 0 is not
the mean shape.
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o method A choice betwen least squares (LS) or partial least squares (PLS) regression for prediction. The
function defaults to LS prediction. PLS might be chosen in cases where correlation is preferred over
linear regression. If PLS is chosen, a two-block PLS analysis using two.b.pls should be performed first,
as only the first singular vector for pedictors will be used for defining prediction criteria (see below)

e ... Any number of prediction criteria. Criteria should be presented as either a scalar (if one predictor is
provided) or a vector (if more than one predictor or a prediciton matrix is provided); e.g., predl = ¢(0.1,
-0.5), pred2 = ¢(-0.2, -0.1) (which would be the case if two predictors were provided). It is essential
that the number of elements in any prediction criterion matches the number of predictors. Caution
should be used when providing a design matrix to ensure that correct dummy variables are used in
prediction criteria, and that either 1) an intercept is not included in the design and 2) is TRUE in the
Intercept argument; or or 1) an intercept is included in the deisgn and 2) is FALSE in the Intercept
argument; or 1) an intercept is not included in the design and 2) is FALSE in the Intercept argument,
if no intercept is desired

Function returns a list of predicted shapes matching the number of vectors of prediction criteria provides.
The predications also have names matching those of the prediction criteria.

12.1.1 Example 1: Shapes from principal component analysis (plotTangentSpace)

data("plethodon")

Y.gpa <- gpagen(plethodon$land, print.progress = FALSE) # GPA-alignment
M <- mshape(Y.gpa$coords) # mean shape (for all ezamples)

PCA <- plotTangentSpace(Y.gpa$coords, warpgrids = FALSE) # PCA
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First, we will get the shapes along PC1 using Procrustes values -0.1 and 0.1, corresponding to the x-axis
values in the plot above

preds <- shape.predictor(Y.gpa$coords, x= NULL, Intercept = FALSE,
predl = -0.1, pred2 = 0.1) # PC 1 extremes, sort of
plotRefToTarget (M, preds$predl, outline = plethodon$outline)
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VAL

plotRefToTarget (M, preds[[1]]) # can also access list with numerical indezing

VAL

plotRefToTarget (M, preds$pred2, outline = plethodon$outline)
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Now, we will get the shapes at the minima and maxima of PC1 using min and max, corresponding to the
x-axis values in the plot above

PC <- PCA$pc.scores[,1] # choose first azis

preds <- shape.predictor(Y.gpa$coords, x= PC, Intercept = FALSE,
predl = min(PC), pred2 = max(PC)) # PC 1 extremes, more technically
plotRefToTarget (M, preds$predl, outline = plethodon$outline)

VALY

plotRefToTarget (M, preds$pred2, outline = plethodon$outline)

Using both of these techniques, we can chose to visualie a shape from any place in the shape space. Here we
set user-picked spots (cound with locator) - can be anything, but it in this case, apparent groups
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PC <- PCA$pc.scores[,1:2]

preds <- shape.predictor(Y.gpa$coords, x= PC, Intercept = FALSE,
predl = c(0.045,-0.02),
pred?2 c(-0.025,0.06),
pred3 = c(-0.06,-0.04))

# shape at middle of bottom-right cluster

plotRefToTarget (M, preds$predl, outline = plethodon$outline)

EEENNEEE
/] )
I It /1]
SeE|
LI
[T T

# shape at middle of top cluster
plotRefToTarget (M, preds$pred2, outline = plethodon$outline)
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# shape at middle of bottom-left cluster
plotRefToTarget (M, preds$pred3, outline = plethodon$outline)

This example shows how you can predict a shape anywhere in the shape space.

12.1.2 Example 2: Shapes from allometry analyses

First we do a simple allometry model of shape~size (as one would do using procD.allometry)

preds <- shape.predictor(Y.gpa$coords, x= log(Y.gpa$Csize), Intercept = TRUE,
predmin = min(log(Y.gpa$Csize)), predmax = max(log(Y.gpa$Csize)))
plotRefToTarget (M, preds$predmin, outline = plethodon$outline)
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plotRefToTarget (M, preds$predmax, outline = plethodon$outline)
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Next we do an allometry example, using RegScore or PredLine via procD.allometry

gdf <- geomorph.data.frame(Y.gpa)
plethAllometry <- procD.allometry(coords~Csize, data=gdf, logsz = TRUE, print.progress = FALSE)

##
## Allometry Model

plot(plethAllometry, method="RegScore", warpgrids = FALSE)
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preds <- shape.predictor(plethAllometry$Ahat, x= plethAllometry$Reg.proj, Intercept = FALSE,
predmin = min(plethAllometry$Reg.proj),
predmax = max(plethAllometry$Reg.proj))

plotRefToTarget (M, preds$predmin, outline = plethodon$outline)
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plotRefToTarget (M, preds$predmax,

outline = plethodon$outline)
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plot(plethAllometry, method="PredLine", warpgrids = FALSE)
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preds <- shape.predictor(plethAllometry$Ahat, x= plethAllometry$pred.val, Intercept

predmin
predmax

log(Size)

min(plethAllometry$pred.val),
max (plethAllometry$pred.val))

plotRefToTarget (M, preds$predmin, outline = plethodon$outline)

L1 1]

\

P~

[

plotRefToTarget (M, preds$predmax, outline = plethodon$outline)
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12.1.3 Example 3: Shapes from factors

Here the mean shapes of the four groups (species*site) are plotted via procD.1lm and prcomp

gdf <- geomorph.data.frame(Y.gpa, species = plethodon$species, site = plethodon$site)
pleth <- procD.lm(coords ~ species*site, data=gdf, print.progress = FALSE)

PCA <- prcomp(pleth$fitted) # PCA using prcomp

plot (PCA$x, asp=1, pch=19) # plots position of group means
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means <- unique(round(PCA$x,3))
means # note: suggests 3 PCs useful enough

## PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PCO PC10 PC11 PC12 PC13 PC1l4
## [1,] 0.012 0.063 0.000 O O O O O O 0 0 0 0 0
## [2,] 0.062 -0.031 0.000 O O O O O O 0 0 0 0 0
## [3,] -0.038 -0.018 -0.012 O O O O O O 0 0 0 0 0
## [4,] -0.036 -0.014 0.012 O O O O O O 0 0 0 0 0
## PC15 PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24
## [1,] 0 0 0 0 0 0 0 0 0 0
## [2,] 0 0 0 0 0 0 0 0 0 0
## [3,] 0 0 0 0 0 0 0 0 0 0
## [4,] 0 0 0 0 0 0 0 0 0 0

preds <- shape.predictor(arrayspecs(pleth$fitted, 12,2), x= PCA$x[,1:3],
Intercept = FALSE,
predl = means[1,1:3],
pred2 = means[2,1:3],
pred3 = means[3,1:3],
pred4 = means([4,1:3])
plotRefToTarget (M, preds$predl, outline = plethodon$outline)
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plotRefToTarget (M, preds$pred2, outline = plethodon$outline)
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plotRefToTarget (M, preds$pred3, outline = plethodon$outline)
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We can also get the mean shapes of the four factors using the model matrix from procD.1lm

X <- pleth$X # The model matriz from “procD.lm’
X # includes intercept; remove for better functioning

## (Intercept) speciesTeyah siteSymp speciesTeyah:siteSymp
## 1 0 1
##
##
##
##
#i#
##
##
##
##
##
##
##
##
##
#i#
##
##
##
##
##
#i#
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## 23 1 0 0 0
## 24 1 0 0 0
## 25 1 0 0 0
## 26 1 0 0 0
## 27 1 0 0 0
## 28 1 0 0 0
## 29 1 0 0 0
## 30 1 0 0 0
## 31 1 1 0 0
## 32 1 1 0 0
## 33 1 1 0 0
## 34 1 1 0 0
## 35 1 1 0 0
## 36 1 1 0 0
## 37 1 1 0 0
## 38 1 1 0 0
## 39 1 1 0 0
## 40 1 1 0 0
X <- X[,-1]

symJord <- c(0,1,0) # design for P. Jordani in sympatry

alloJord <- c(0,0,0) # design for P. Jordant in allopatry

preds <- shape.predictor(arrayspecs(pleth$fitted, 12,2), x = X, Intercept =
symJord=symJord, alloJord=alloJord)

plotRefToTarget (M, preds$symJord, outline = plethodon$outline)

plotRefToTarget (M, preds$alloJord, outline = plethodon$outline)
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12.1.4 Example 4: Shapes from Partial Least Squares Analysis (two.b.pls)

We shal use a different example dataset to show how

data(plethShapeFood)
Y.gpa<-gpagen(plethShapeFood$land, print.progress = FALSE) #GPA-altgnment

# 2B-PLS between head shape and food use data
PLS <-two.b.pls(plethShapeFood$food,Y.gpa$coords, iter=999)
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##

|
summary (PLS)

#i#

## Call:

## two.b.pls(Al = plethShapeFood$food, A2 = Y.gpa$coords, iter = 999)
##

##

#i#

## r-PLS: 0.759

##

## P-value: 0.001

##

## Based on 1000 random permutations

plot (PLS)
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PLS1 Plot: Block 1 (X) vs. Block 2 (Y)
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preds <- shape.predictor(Y.gpa$coords, plethShapeFood$food, Intercept = FALSE,

method = "PLS",

predl = 2, pred2 = -4, pred3 = 2.5) # using PLS plot as a gutide
M <- mshape(Y.gpa$coords)
plotRefToTarget (M, preds$predl) # shape at 2 on food azis

l

plotRefToTarget (M, preds$pred2) # shape at -4 on food azis

11

|
plotRefToTarget (M, preds$pred3) # shape at 2.5 on food azis
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This can also be used with an PLS analysis in geomorph.

12.2 Plot shape differences between a reference and target
(plotRefToTarget)

Function plots shape differences between a reference and target specimen.

Function

plotRefToTarget (M1, M2, mesh = NULL, outline = NULL, method = c("TPS",
"vector", "points", "surface"), mag = 1, links = NULL, label = FALSE,
gridPars = NULL, useRefPts = FALSE, .. )

Arguments

o M1 Matrix of landmark coordinates for the first (reference) specimen

o M2 Matrix of landmark coordinates for the second (target) specimen

e mesh A mesh3d object for use with method="“surface”

o outline An x,y curve or curves warped to the reference (2D only)

e method Method used to visualize shape difference; see below for details

specimen

o mag The desired magnification to be used when visualizing the shape difference (e.g., mag=2)

e links An optional matrix defining for links between landmarks
e label A logical value indicating whether landmark numbers will be plotted
e gridPars An optional object made by gridPar

o useRefPts An option (logical value) to use reference configuration points rather than target configuration

points (when method = “TPS”) - NOT RECOMMENDED FOR NOVICE USERS

e ... Additional parameters (not covered by gridPar) to be passed to plot, plot3d or shade3d.

The option mag allows the user to indicates the degree of magnification to be used when displaying the shape
difference. The function will plot either two- or three-dimensional data. This function combines numerous

plotting functions found in Claude (2008).

12.2.1 The four plotting methods

A 2D data example

data(plethodon) # exzample dataset
Y.gpa<-gpagen(plethodon$land, print.progress = FALSE) # GPA-alignment
ref<-mshape(Y.gpa$coords)

1. TPS a thin-plate spline deformation grid is generated. For 3D data, this method will generate thin-plate

spline deformations in the x-y and x-z planes.
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plotRefToTarget (ref,Y.gpa$coords([,,39], method="TPS")

# magnify difference by 3X
plotRefToTarget (ref,Y.gpa$coords[,,39] ,mag=3, method="TPS")

# vector a plot showing the vector displacements between corresponding landmarks
# in the reference and target specimen %s shown.
plotRefToTarget (ref,Y.gpa$coords[,,39] ,method="vector", mag=3)
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2. vector a plot showing the vector displacements between corresponding landmarks in the reference and
target specimen is shown (sometimes known as a “lollipop graph, sensu MorphoJ”)

plotRefToTarget (ref,Y.gpa$coords[, ,39] ,method="vector",mag=3)
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3. points a plot is displayed with the landmarks in the target (black) overlaying those of the reference
(gray). Additionally, if a matrix of links is provided, the landmarks of the mean shape will be connected
by lines. The link matrix is an M x 2 matrix, where M is the desired number of links. Each row of the
link matrix designates the two landmarks to be connected by that link.

plotRefToTarget (ref,Y.gpa$coords[, ,39] ,method="points", mag=3)
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In these first 3 methods, it is possible to add a wireframe or an outline to these plots. For more information
on creating and importing an outline, see warpRefOutline (helper functions end of this chapter). Using
links (wireframe) for representation of your specimen. In TPS, vector & points in both 2D and 3D it is
possible to add links to these plots. The links argument can be made by hand, using matrix, or there is a
graphical assisted function define.links.
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In the plethodon list, there is a matrix called plethodon$links

[,11 [,2]
[1,] 4 5
[2,] 3 5
[3,] 2 4
(4,] 1 2
(5,] 1 3
(6,] 6 7
7,1 7 8
[8,] 8 9
[9,] 9 10
[10,] 10 11
[11,] 11 12
[12,1 12 1
[13,] 1 9

[14,] 1 10
plotRefToTarget (ref,Y.gpa$coords[,,39] ,method="points", mag=3, links = plethodon$links)

In the plethodon list, there is a matrix called plethodon$outline to be added using the outline option.
This requires first warping a referrence outline to the mean shape using the function warpRefOutline (see
helper functions end of this chapter).

plotRefToTarget (ref,Y.gpa$coords[,,39], method ="TPS",
outline=plethodon$outline)

plotRefToTarget (ref,Y.gpa$coords([,,39], mag=2, method ="points",
outline=plethodon$outline)

Now, a 3D data example using the three methods shown above

data(scallops)

Y.gpa<-gpagen(A=scallops$coorddata, curves=scallops$curvslide,
surfaces=scallops$surfslide, PrinAxes = FALSE, print.progress = FALSE)
ref<-mshape(Y.gpa$coords)

101



plotRefToTarget (ref,Y.gpa$coords[,,1] ,method="TPS", mag=3)

X,Y tps grid Y,Z tps grid

plotRefToTarget (ref,Y.gpa$coords[,,1] ,method="vector", mag=3)

%! RGL device 6 [Focus]

Figure 16: Scallop shell shape represented by method=*“vector”

plotRefToTarget (ref,Y.gpa$coords([,,1] ,method="points", mag=3)
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%| RGL device 6 [Focus]

0.2

0.2 -0.1 0 01
/4. surface a mesh3d surface is warped using thin-plate spline

(for 3D data only). Requires mesh3d object in option mesh, made using warpRefMesh (see below), which
provides a mesh3d object that is the shape of the sample mean. It is recommended that the mean shape is
used as the reference for warping (see Rohlf 1998). A 3D data example using the average mesh made with

warpRefMesh (Note: this example is not included in the geomorph package, but show here for illustrative
purposes).

ref <- mshape(Y.gpa$coords) # calculate the mean shape from set of GPA-aligned specimens
plotRefToTarget (Ml=ref, M2=Y.gpa$coordsl[,,1], mesh=averagemesh, method="surface")

# averagemesh ts a mesh made with warpRefMesh,

# that is the shape of the mean of a set of specimens

%| RGL device 4 [Focus]

 Function plots the warped “target” shape (shown here against
the mean for illustrative purposes only). This function can be used to show deformations between any two
sets of coordinates. Coordinate data are provided by several functions, a few examples given below.

12.2.1.1 Example 1 plotTangentSpace

The function returns a list containing shape coordinates ($pc.shapes) for the minimum and maximum shape
of all PCs. To use, enter the coordinate matrix into position M2, e.g.,
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data(plethodon) # ezample dataset
Y.gpa<-gpagen(plethodon$land, print.progress = FALSE) # GPA-alignment
res <- plotTangentSpace(Y.gpa$coords,
groups = factor(paste(plethodon$species, plethodon$site)))
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layout (mat=matrix(c(1,2), ncol=2)) # set up two part layout for plotting
ref<-mshape(Y.gpa$coords) # calculate mean shape
# shape change along PC1 in the negative direction
plotRefToTarget (Ml=ref, M2=res$pc.shapes$PClmin, method="TPS")
# shape change along PC1 in the positive direction
plotRefToTarget (Ml=ref, M2=res$pc.shapes$PClmax, method="TPS")
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layout(1l) # reset to 1 graph per plot

12.2.1.2 Example 2 procD.Allometry

plot of a procD.allometryobject returns a list containing the shapes at the min and max size, which can
be plotted as follows:

data(ratland) # ezample dataset
Y.gpa<-gpagen(ratland, print.progress = FALSE) # GPA-alignment
gdf <- geomorph.data.frame(Y.gpa)
# perform the Multivariate Regression
Allom <- procD.allometry(coords ~ Csize, data=gdf,
print.progress = FALSE)

##
## Allometry Model
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# plot the Multivariate Regression and save the min/maxz shapes
res <- plot(Allom, method="RegScore", shapes=TRUE)
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layout (mat=matrix(c(1,2), ncol=2)) # set up two part layout for plotting
ref<-mshape(Y.gpa$coords) # calculate mean shape
# Predicted shape at min centrod size

plotRefToTarget (ref, res$min.shape, method="vector", mag=2, axes=F, main = "minCsize")

# Predicted shape at max centrod size

plotRefToTarget (ref, res$max.shape, method="vector", mag=2, axes=F, main = "maxCsize")
minCsize maxCsize

5 d o @ £
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layout(l) # reset to 1 graph per plot

12.2.1.3 Example 3 two.b.pls, integration.test & phylo.integration

plot of a pls object returns a list containing the shapes at the min and max of PLS1 axis for one or both
blocks (only if the data were inputted as 3D arrays), which can be plotted as follows:

data(plethShapeFood) # ezample dataset

Y.gpa<-gpagen(plethShapeFood$land, print.progress = FALSE) # GPA-alignment
PLS <-two.b.pls(Y.gpa$coords,plethShapeFood$food,iter=999, print.progress = FALSE)
res <- plot(PLS, shapes=TRUE) # PLS plot
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PLS1 Plot: Block 1 (X) vs. Block 2 (YY)

-0.10 -0.05 0.00 0.05

layout (mat=matrix(c(1,2), ncol=2)) # set up two part layout for plotting
ref<-mshape(Y.gpa$coords) # calculate mean shape

# Predicted shape at min of PLS1 azis 1

plotRefToTarget (ref, res$plsl.min, method="TPS", mag=2, axes=F, main = "min of PLS1")
# Predicted shape at max of PLS1 azis 1

plotRefToTarget (ref, res$plsl.max, method="TPS", mag=2, axes=F, main = "max of PLS1")

layout (1) # reset to 1 graph per plot

12.2.1.4 Example 4, differences between groups

for groups shown to be significantly different with procD.1m, first average the data by groups, calculate group
means and plot those means:

data(plethodon)

Y.gpa<-gpagen(plethodon$land, print.progress = FALSE) # GPA-alignment
# calculate mean shape for each group

means <- aggregate(two.d.array(Y.gpa$coords) ~ plethodon$site, FUN=mean)
# make mean vectors as matric
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Allo.mn <- matrix(as.numeric(means[1,-1]), ncol=2, byrow=T)
ref<-mshape(Y.gpa$coords) # calculate mean shape
plotRefToTarget (ref, Allo.mn, method="TPS") # shape of group
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13 Data inspection

13.1 Plot landmark coordinates for all specimens (plotAllSpecimens)

Function plots landmark coordinates for a set of specimens.

Function

plotAllSpecimens(A, mean = TRUE, links = NULL, label = FALSE, plot.param = list())

Arguments

o A A 3D array (p x k x n) containing GPA-aligned coordinates for a set of specimens

e mean A logical value indicating whether the mean shape should be included in the plot

e links An optional matrix defining for links between landmarks

e pointscale An optional value defining the size of the points for all specimens

o meansize An optional value defining the size of the points representing the average specimen

The function creates a plot of the landmark coordinates for all specimens. This is useful for examining
patterns of shape variation after GPA. If “mean=TRUE”, the mean shape will be calculated and added to
the plot. Additionally, if a matrix of links is provided, the landmarks of the mean shape will be connected
by lines. The link matrix is an m x 2 matrix, where m is the desired number of links. Each row of the link
matrix designates the two landmarks to be connected by that link. The function will plot either two- or

three-dimensional data.

Example for 2D data data(plethodon)

Y.gpa<-gpagen(plethodon$land, print.progress = FALSE) # GPA
plethodon$links # look at links matriz

[,11 [,2]
[1,] 4 5
[2,] 3 5
[3,] 2 4
4,] 1 2
(5,] 1 3
(6,1] 6 7
(7,1 7 8
(8,] 8 9
[9,1] 9 10
(10,1 10 11
(11,1 11 12
[12,1 12 1
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[13,] 1 9
[14,] 1 10

plotAllSpecimens(Y.gpa$coords,links=plethodon$links,label=T,
plot.param = list(pt.bg = "green", mean.cex=1, link.col="red",
txt.pos=3, txt.cex=1))

0.2

0.1

Example for 3D data

data(scallops)
Y.gpa <- gpagen(A=scallops$coorddata, curves=scallops$curvslide,
surfaces=scallops$surfslide, print.progress = FALSE)
scallinks <- matrix(c(l,rep(2:16, each=2),1), nrow=16, byrow=TRUE) # make links matriz
plotAllSpecimens(Y.gpa$coords,links=scallinks,
plot.param= list(pt.bg = "blue",link.col="red"))

Protip! Typing the name of the function in the console brings up the function code. The user can look at
this code for ideas of how to customize their own graphs.

13.2 Find potential outliers (plotOutliers)

Function plots a set of Procrustes-aligned specimens ordered by their distance from the mean shape. It is
used as a tool to aid identifying specimens that have been digitized wrong (for example, mixing up landmark
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order). Specimens falling outside of the upper quartile range are potential outliers. We do not, however,
stipulate that they must be removed or are wrong.

Function

“plotOutliers(A, groups = NULL)

Arguments

o A A 3D array (p x k x n) containing landmark coordinates for a set of aligned specimens
e groups An optional factor defining groups

The function creates a plot of all specimens ordered by their Procrustes distance from the mean shape. In the
graph, the median (unbroken line) and upper and lower quartiles (dashed lines) summarize the distances from
the mean shape. Specimens falling above the upper quartile are plotted in red and their address returned, for
inspection by plotRefToTarget.

data(plethodon)

# let's make some outliers
newland <- plethodon$land # make copy of example dataset

# dataset needs dimnames for plotting reference so we shall assign arbitrary names
dimnames (newland) [[3]] <- paste("pleth", 1:dim(newland)[3], sep="")
newland[c(1,8),,2] <- newland[c(8,1),,2] # swap lmks 1 and 8 of specimen 2
newland[c(3,11),,26] <- newland[c(11,3),,2] # swap lmks 3 and 11 of specimen 26
Y <- gpagen(newland, print.progress = FALSE) # perform GPA
plotOutliers(Y$coords)

All Specimens
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## pleth26 pleth2 plethl4 pleth27 pleth4 plethb5 pleth3 plethl2 pleth9
#i# 26 2 14 27 4 5 3 12 9
## pleth6 plethl0 plethll plethl9 plethl3 plethl pleth29 pleth20 pleth22
## 6 10 11 19 13 1 29 20 22
## pleth7 plethlb5 plethl6 pleth31 pleth37 pleth34 pleth21 pleth40 pleth38
## 7 15 16 31 37 34 21 40 38
## plethl8 pleth8 plethl7 pleth30 pleth32 pleth36 pleth24 pleth33 pleth35
#i# 18 8 17 30 32 36 24 33 35
## pleth23 pleth25 pleth28 pleth39
## 23 25 28 39

If there are outliers, then we can view them:

outliers <- plotOutliers(Y$coords) # function returns dimname and address of outliers
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All Specimens
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plotRefToTarget (mshape (Y$coords) ,Y$coords[, ,outliers[1]] ,method="vector", label = T)
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The way that the arrows cross over each other in these two plots are classic examples of when two landmarks
have been digitized in the wrong order (switched). In this case, either go back to the original specimen and
redigitize. Or in R, you can switch the landmarks as we did above.

13.3 Plot 3D specimen, fixed landmarks and surface semilandmarks (plotspec)

A function to plot three-dimensional (3D) specimen along with its landmarks.

Function

plotspec(spec, digitspec, fixed = NULL, ptsize = 1, centered = FALSE, ...)

Arguments

e spec An object of class shape3d/mesh3d, or matrix of 3D vertex coordinates.

o digitspec Name of data matrix containing 3D fixed and/or surface sliding coordinates.

e fized Numeric The number of fixed template landmarks (listed first in digitspec)

o ptsize Numeric Size to plot the mesh points (vertices), e.g., 0.1 for dense meshes, 3 for sparse meshes

o centered Logical Whether the data matrix is in the surface mesh coordinate system (centered=FALSE)
or if the data were collected after the mesh was centered (centered=TRUE)- see below

e ... additional parameters which will be passed to plot3d.

)

Function to plot 3D specimens along with their digitized “fixed” landmarks and semilandmarks “surface sliders’
and “curve sliders”. If specimen is a 3D surface (class shape3d/mesh3d) mesh is plotted. For visualization
purposes, 3D coordinate data collected using digit.fixed or digitsurface and buildtemplate prior to
build 1.1-6 were centered by default. Therefore use this function with centered=TRUE. Data collected outside
geomorph should be read using centered=FALSE. The function assumes the fixed landmarks are listed at the
beginning of the coordinate matrix (digitspec).
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13.3.1 Example

data(scallopPLY) #load example dataset
plotspec(spec=scallopPLY$ply, digitspec=scallopPLY$coords, fixed=16, centered =TRUE)

% RGL device 1 [Focus]

specimen|, 1] specimen], 3]

# The fixed landmarks and curve semilandmarks are
in red, and the surface semilandmarks are in green.

14 Plots for analytical functions

Many of geomorph’s analytical functions decribed in Vigentte 3 return information in the form of a list that
can be used in the S3 generic function plot.

14.1 plot on objects from gpagen

Function calls plotAllSpecimens and plots landmark coordinates for a set of specimens.

14.2 plot on objects from bilat.symmetry

Function plots the symmetric and asymmetric shape component, and the mean directional and fluctuating
asymmeytry as shape change graphs.

14.2.1 Example

data(mosquito) #ezample dataset
gdf <- geomorph.data.frame(wingshape = mosquito$wingshape,
ind=mosquito$ind, side=mosquito$side,
replicate=mosquito$replicate) # make geomorph data frame
mosquito.sym <- bilat.symmetry(A = wingshape, ind = ind, side = side,
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replicate = replicate, object.sym = FALSE, RRPP = TRUE, iter = 499,
data = gdf, print.progress = FALSE)

plot(mosquito.sym, warpgrids = TRUE)

Symmetric Shape Component (left) and Asymmetric Shape Component (right)
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Mean directional (left) and fluctuating (right) asymmetry

14.3 plot on objects from procD.allometry

Function

plot(x, method = c("CAC", "RegScore", "PredLine"),
warpgrids = TRUE, label = NULL, gp.label = FALSE, pt.col = NULL,
mesh = NULL, shapes = TRUE, ...)

Arguments

z plot object (from procD.allometry)
method Method for estimating allometric shape components
warpgrids A logical value indicating whether deformation grids for small and large shapes should be
displayed (note: if groups are provided no TPS grids are shown)
label An optional vector indicating labels for each specimen that are to be displayed
gp-label A logical value indicating labels for each group to be displayed (if group was originally included);
“PredLine” only
pt.col An optional vector of colours to use for points (as in points(bg=))
mesh A mesh3d object to be warped to represent shape deformation of the minimum and maximum
size if warpgrids=TRUE (see warpRefMesh).
shapes Logical argument whether to return the the shape coordinates shape coordinates of the small
and large shapes

. other arguments passed to plot
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14.3.1 Three plotting methods

1. If “method=CAC” (the default) the function calculates the common allometric component of the shape
data, which is an estimate of the average allometric trend within groups (Mitteroecker et al. 2004).
The function also calculates the residual shape component (RSC) for the data.

2. If “method=RegScore” the function calculates shape scores from the regression of shape on size, and
plots these versus size (Drake and Klingenberg 2008). For a single group, these shape scores are
mathematically identical to the CAC (Adams et al. 2013).

3. If “method=PredLine” the function calculates predicted values from a regression of shape on size,
and plots the first principal component of the predicted values versus size as a stylized graphic of the
allometric trend (Adams and Nistri 2010).

14.3.2 Example

Comparing allometric slopes between groups (Homogeneity of Slopes Test)

data(plethodon) # exzample dataset
Y.gpa <- gpagen(plethodon$land, print.progress = FALSE) # GPA-alignment
# make geomorph data frame
gdf <- geomorph.data.frame(shape = Y.gpa$coords, cs = Y.gpa$Csize,
site = plethodon$site, species = plethodon$species)

# simple allometry
plot(procD.allometry(shape~cs, logsz = TRUE, data=gdf, iter=499,

RRPP=TRUE, print.progress = FALSE),

method = "RegScore", warpgrids = T)

Allometry Model
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# Comparing allometric slopes between groups
plethAllometry <- procD.allometry(shape~cs, ~species*site,
logsz = TRUE, data=gdf, iter=499, RRPP=TRUE, print.progress = FALSE)

Homogeneity of Slopes Test
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Allometry Model
plot(plethAllometry, method = "PredLine")
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col.gp<-c(rep("black",10) ,rep("red",10),

rep("yellow",10) ,rep("orange",10)) # not a factor
plot(plethAllometry, method = "PredLine", pt.col = col.gp) # change colour of points
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14.4 plot on objects from advanced.procD.lm, procD.lm, procD.pgls and
procD.allometry

Plots the following graphs:

o PCA Residuals A PCA of the residuals (observed responses - fitted responses).
e -Q plot Evaluate the normality of a variable using a Q-Q plot.
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e Residuals vs. PC1 fitted Residuals plotted against the first PC axis of fitted values, in order to verify
the assumption that the residuals are randomly distributed and have constant variance.

e Residuals vs. Fitted Procrustes distance of fitted values vs. Procrustes distance of residuals, alternative
to the above plot.

o OQutliers (if outliers= TRUE) calls plotOutliers, to identify potential outliers.

14.4.1 Example

data(ratland) # exzample dataset
rat.gpa<-gpagen(ratland, print.progress = FALSE) # GPA-alignment
gdf <- geomorph.data.frame(rat.gpa) # make geomorph data frame
rat.anova <- procD.lm(coords ~ Csize, data = gdf, iter = 999,

RRPP = TRUE, print.progress = FALSE)
plot(rat.anova) # diagnostic plots

PCA Residuals
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Procrustes Distance Residuals

Procrustes Distance Residuals
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Residuals vs. Fitted
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14.5 plot on objects from phylo.modularity and modularity.test

Plots a histogram of the Covariance ratio (CR, the estimate of the observed modular signal) sampling
distribution. The arrow points to the observed CR, and the grey bars are the permuted values.

14.6 plot on objects from compare.evol.rates and compare.multi.evol.rates

Plots a histogram of the ratio of maximum to minimum evolutionary rates sampling distribution. The arrow
points to the observed ratio, and the grey bars are the permuted values.

14.7 plot on objects from physignal

Plots a histogram of the ratio of K (estimate of phylogenetic signal) sampling distribution. The arrow points
to the observed K, and the grey bars are the permuted values.

14.8 plot on objects from two.b.pls, integration.test and phylo.integration

Function

plot(x, label = NULL, warpgrids = TRUE, shapes = TRUE, ...)

Arguments

o 1z plot object (from integration.test, phylo.integration or two.b.pls)

e label An optional vector indicating labels for each specimen that are to be displayed

o warpgrids A logical value indicating whether deformation grids for extreme ends of axisl and axis2
should be displayed (if data were originaly input as 3D array)

e shapes Logical argument whether to return the the shape coordinates shape coordinates of the extreme
ends of axisl and axis2

e ... other arguments passed to plot
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14.8.1 Example

data(plethodon) # example dataset

Y.gpa<-gpagen(plethodon$land, print.progress = FALSE) # GPA-alignment

#landmarks on the skull and mandible assigned to partitions

land.gps<-c("A","A","A", "A", "A", "B","B","B","B","B","B","B")

IT <- integration.test(Y.gpa$coords, partition.gp=land.gps, iter=999,
print.progress = FALSE)

plot(IT) # PLS plot

N PLS1 Plot: Block 1 (X) vs. Block 2 (Y)
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14.9 plot on objects from trajectory.analysis

Function
plot(x, group.cols = NULL, pt.seq.pattern = c("white", "gray", "black"), pt.scale = 1,
)

Arguments

o z plot object (from trajectory.analysis )

e group.cols An optional vector of colors for group levels

o pt.seq.pattern The sequence of colors for starting, middle, and end points of trajectories, respectivly.
e.g., ¢(“green”, “gray”, “red”) for gray points but initial points with green color and end points with
red color.

o pt.scale An optional value to magnify or reduce points (1 = no change)

e ... other arguments passed to plot

14.9.1 Example

# Motion paths represented by 5 time points per motion
data(motionpaths) #example datset
gdf <- geomorph.data.frame(trajectories = motionpaths$trajectories,
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groups = motionpaths$groups)
TA <- trajectory.analysis(fl = trajectories ~ groups, traj.pts = 5,
data=gdf, iter=199, print.progress = FALSE)
plot (TA)

Two Dimensional View of Phenotypic Trajectories
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plot(TA, group.cols = c("dark red", "dark blue", "dark green", "yellow"),

pt.seq.pattern = c("green", "gray30", "red"), pt.scale = 1.3)

Two Dimensional View of Phenotypic Trajectories
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14.10 Helper functions
14.10.1 Set up parameters for grids, points, and links in plotRefToTarget (gridPar)

Function allows users to vary certain plotting parameters to produce different graphical outcomes for
plotRefToTarget. Not all parameters need to be adjusted to use this function, as the defaults above will be
used.

Function

gridPar(pt.bg = "gray", pt.size = 1.5, link.col = "gray", link.lwd = 2,
link.1lty = 1, out.col = "gray", out.cex = 0.1, tar.pt.bg = "black",
tar.pt.size = 1, tar.link.col "black", tar.link.lwd = 2,
tar.link.lty = 1, tar.out.col = "black", tar.out.cex = 0.1,
n.col.cell = 20, grid.col = "black", grid.lwd = 1, grid.lty = 1,
txt.adj = 0.5, txt.pos = 1, txt.cex = 0.8, txt.col = "black")

Arguments

o pt.bg Background color of reference configuration points (single value or vector of values)

o pt.size Scale factor for reference configuration points (single value or vector of values)

o link.col The color of links for reference configurations (single value or vector of values)

o link.lwd The line weight of links for reference configurations (single value or vector of values)

o link.lty The line type of links for reference configurations (single value or vector of values)

e out.col The color of outline for reference configurations (single value or vector of values)

o out.cez The size of plotting symbol of outline for reference configurations (single value or vector of
values)

o tar.pt.bg Background color of target configuration points (single value or vector of values)

o tar.pt.size Scale factor for target configuration points (single value or vector of values)

e tar.link.col The color of links for target configurations (single value or vector of values)

e tar.link.lwd The line weight of links for target configurations (single value or vector of values)

o tar.link.lty The line type of links for target configurations (single value or vector of values)

o tar.out.col The color of outline for target configurations (single value or vector of values)

o tar.out.cex The size of plotting symbol of outline for target configurations (single value or vector of
values)

e n.col.cell The number of square cells (along x axis) for grids (single numerical value)

e grid.col The color of grid lines (single value)

o grid.lwd Scale factor for the weight of grid lines (single numerical value)

o grid.lty The line type for grid lines (single numerical value, as in base R plot)

o tat.adj The adjustment value of the landmark label (one or two values, as in base R text)

o tat.pos The position of the landmark label (single numerical value, as in base R text)

o txt.cex The size of the landmark label text (single numerical value, as in base R text)

o tat.col The color of the landmark label text (single numerical value, as in base R text)

Examples

data(plethodon) # example dataset
Y.gpa<-gpagen(plethodon$land, print.progress = FALSE) #GPA-alignment
ref<-mshape (Y.gpa$coords)

# Altering points and links

GP1 <- gridPar(pt.bg = "red", pt.size = 1, link.col="blue", link.lwd=2, n.col.cell=50)
plotRefToTarget (ref,Y.gpa$coords([,,39], gridPars=GP1, mag=2,

links=plethodon$links, method="TPS")
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# Altering point color
GP2 <- gridPar(pt.bg = "green", pt.size = 1)
plotRefToTarget (ref,Y.gpa$coords[,,39], gridPars=GP2, mag=3, method="vector")
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# Altering ref and target points
GP3 <- gridPar(pt.bg = "blue", pt.size = 1.5, tar.pt.bg = "orange", tar.pt.size = 1)
plotRefToTarget (ref,Y.gpa$coords[,,39], gridPars=GP3, mag=3, method="points")
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# Altering outline color

GP4 <- gridPar(tar.out.col = "red", tar.out.cex = 0.3)
plotRefToTarget (ref,Y.gpa$coords([,,39], gridPars=GP4, mag=3,
outline=plethodon$outline, method="TPS")

# Altering text labels
GP5 <- gridPar(txt.pos = 3, txt.col = "red")
plotRefToTarget (ref,Y.gpa$coords([,,39], gridPars=GP5, mag=3, method="vector", label=TRUE)
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14.10.2 Find the mean specimen (findMeanSpec)

Function
findMeanSpec(A)

Arguments
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A function to identify which specimen lies closest to the estimated mean shape for a set of aligned specimens.
A is a 3D array (p x k x n) containing landmark coordinates for a set of aligned specimens. This function is
used to facilitate finding a specimen to use with warpRefMesh or warpRefOutline.

findMeanSpec(Y.gpa$coords) # GPA-aligned coordinates
specimen? # returns the name of the specimen
25 # returns the specimen number (where it appears in the 3D array)

14.10.3 Create an outline object warped to the mean shape (warpRefOutline)

A function to take an outline (defined by many points) and use thin-plate spline method to warp the outline
into the estimated mean shape for a set of aligned specimens. This outline is used plotRefToTarget where
outline= option is available.

Function

warpRefOutline(file, mesh.coord, ref, color = NULL, centered = FALSE)

Arguments

e file A .txt or .csv file of the outline point coordinates, or a .TPS file with OUTLINES= or CURVES=
elements

e coord A p x k matrix of 2D coordinates digitized on the ply file.

e ref A p x k matrix of 2D coordinates made by mshape

Function takes an outline (defined by many points) with a set of fixed landmark coordinates and uses the
thin-plate spline method (Bookstein 1989) to warp the outline into the shape defined by a second set of
landmark coordinates, usually those of the mean shape for a set of aligned specimens. It is highly recommended
that the mean shape is used as the reference for warping (see Rohlf 1998). For file, it is necessary to have in
the working directory a .txt, .csv, .TPS file containing coordinate data of the outline(s). An outline is made
up of many points, each defined by an x and y coordinate.

14.10.3.1 To make an outline txt file in ImageJ (http://imagej.nih.gov/ij/):

e Import an 8-bit black and white drawing of an outline drawn from one of your digitized specimens
a. use Image > Type > 8-bit to convert if necessary
b. use Image > Adjust > Threshold to make B&W

o Process > Binary > Skeletonize the image to find a single (pixel width line around the image)

o Analyze > Tools > Save XY Coordinates to save the coordinates of all of the pixels (you may need to
invert the y coordinate option). This text file will have three columns — the third is a column of RGB
values, and needs to be deleted. NOTE: It is important that the coordinate system of these outline
points matches that of the digitized landmarks. If this is not the case, digitize a fake specimen on this
outline, and save those landmark coordinates to be used in the coord argument.

14.10.3.2 To make an outline TPS file in tpsDIG2 (http://life.bio.sunysb.edu/morph/
soft-dataacq.html):

e Import an image file using File > Input source

e Using Modes > Outline mode, highlight one outline on the image

e Right click on the outline, and choose Save as XY cords, and you will be prompted to the number of
points you want the outline to be saved as (stay with the default all). Click OK

e Repeat for all outline segments

e To finish, File > Save data as... and save a .tps file. Once you have an outline, the workflow in R is as
follows:

e Calculate the mean shape using mshape
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e Choose an actual specimen to use for the warping. The specimen used as the template for this warping
is recommended as one most similar in shape to the average of the sample, but can be any reasonable
specimen — do this by eye, or use findMeanSpec

e Warp this specimen into the mean shape using warpRefOutline

o Use this average outline where it asks for a outline= in plotRefToTarget

14.10.3.3 Workflow

I. Calculate the mean shape using mshape

# mydata s 3D array of coordinate data
ref <- mshape(mydata)

IT. Choose an actual specimen to use for the warping. The specimen used as the template for this outline
warping is recommended as one most similar in shape to the average of the sample, but can be any
reasonable specimen — do this by eye, or use findMeanSpec.

III. Warp this specimen’s outline into the mean shape using warpRefOutline

# read in original coordinate data for a specimen chosen in step 2
sp7 <- readmulti.nts("specimen7.nts")

# run function to create mean shape outline

av.outline <- warpRefOutline("specimen7outline.txt", sp7, ref)
attributes(av.outline)

$names

[1] "outline" "npoints"

Imported outline Warped outline
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For further visualiations, use av.outline$outline where outline= is specified. npoints is a list of the number
of points for each curve, and is currently not used in geomorph but will be in future versions.

14.10.4 Create a mesh3d object warped to the mean shape (warpRefMesh)

A function to take a .ply file and use thin-plate spline method to warp the file into the estimated mean shape
for a set of aligned specimens. This mesh is used in functions where mesh= option is available.

Function
warpRefMesh(file, mesh.coord, ref, color = NULL, centered = FALSE)

Arguments
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e file An ASCII ply file

e mesh.coord A p x k matrix of 3D coordinates digitized on the ply file.

e ref A p x k matrix of 3D coordinates made by mshape

e color Color to set the ply file $material. If the ply already has color, use NULL. For ply files without
color, color=NULL will be plotted as grey.

o centered Logical If the data in mesh.coords were collected from a centered mesh (see below).

Function takes a 3D surface mesh in the format of a .ply file and the digitized landmark coordinates uses the
thin-plate spline method (Bookstein 1989) to warp the mesh into the shape defined by a second set of landmark
coordinates, usually those of the mean shape for a set of aligned specimens. It is highly recommended that
the mean shape is used as the reference for warping (see Rohlf 1998).

14.10.4.1 Workflow

I. Calculate the mean shape using mshape

# mydata is 3D array of coordinate data
ref <- mshape(mydata)

II. Choose an actual specimen to use for the warping. The specimen used as the template for this warping
is recommended as one most similar in shape to the average of the sample, but can be any reasonable
specimen — do this by eye, or use findMeanSpec.

IITI. Warp this specimen into the mean shape using warpRefMesh

# read in original coordinate data for a specimen chosen in step 2
sp7 <- readmulti.nts("specimen7.nts")

# read in surface mesh (.ply file) for a specimen chosen in step 2
sp7.ply <- read.ply("specimen7.ply")

# run function to create mean shape mesh

averagemesh <- warpRefMesh(sp7.ply, sp7, mshape(mydata))

%| RGL device 2 ) () O |X| RGL device 3 [Focus]
Imported Mesh Warped Ref Mesh

v 4

IV. Use this average mesh where it asks for a mesh= in the visualization functions For landmark coordinates
digitized with geomorph digitizing functions centered=TRU by default. This refers to the specimen being
centered prior to landmark acquisition in the RGL window. For landmark data collected outside of geomorph,
centered=FALSE will usually be the case. The returned mesh3d object is for use in geomorph functions
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where shape deformations are plotted and mesh= option is available (plotTangentSpace, plotRefToTarget,
and using plot on several analytical functions).

The “averagemesh” can also be saved to the working directory using the rgl function writePLY.

15 Digitizing

This chapter will cover geomorph’s digitizing functions, to collect 2D and 3D data for geometric morphometric
analysis. The functions included in geomorph are offered as alternatives to other software for 2D landmark
data collection such as tpsDIG2, and ImageJ, and 3D landmark data collection such as IDAV landmark.

15.1 2D data collection (digitize2d)

An interactive function to digitize two-dimensional landmarks from .jpg files. This function works very
similarly to TPSdig software by J. Rohlf, allowing a list of files to be processed sequentially.

Function

digitize2d(filelist, nlandmarks, scale = NULL, tpsfile, verbose = TRUE)

Arguments

o filelist A list of names of jpeg images to be digitized.

e nlandmarks Number of landmarks to be digitized.

e scale An optional vector containing the length of the scale to be placed on each image.

e tpsfile The name of a TPS file to be created or read.

o wverbose User decides whether to digitize in verbose or silent format (see details), default is verbose

This function may be used for digitizing 2D landmarks from jpeg images (.jpg). The user provides a list of
image names, the number of landmarks to be digitized, and the name of an output TPS file. The list can be
made manually, using c or list.files base functions e.g.,

filelist <- c("specimenl.jpg", "specimenl.jpg")

# or

filelist <- list.files(pattern = "*.jpg")

Digitizing landmarks from 2D photos requires that a scale bar is placed in the image in order to scale the
coordinate data. The ‘scale’ option requires: a single number (e.g. 10) which means that the scale to be
measured in all images is a 10mm scale bar; OR a vector the same length as the filelist containing a number
for the scale of each image. If scale=NULL, then the digitized coordinates will not be scaled. This option is
NOT recommended.

Landmarks to be digitized can include both fixed landmarks and semi-landmarks, the latter of which are to
be designated as “sliders” for subsequent analysis (see the function define.sliders). Users may digitize all
specimens in one session, or may return at a later time to complete digitizing. In the latter case, the user
provides the same filelist and TPS file and the function will determine where the user left off. If specimens
have missing landmarks, these can be incorporated during the digitizing process using the ‘a’ option as
described below (a = absent).

15.1.1 Digitizing

Digitizing landmarks involves landmark selection using a mouse in the plot window, using the LEFT mouse
button (or regular button for Mac users): Digitize the scale bar by selecting the two end points (single click
for start and end). The user is asked whether the system should keep or discard the digitized scale bar.
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digitize2d(filelist nlandmarks=11, scale=3, tpsfile = "salamaders.tps"),verbose = TRUE)
Only 1 scale measure provided. Will use scale = 3 for all specimens.

Digitizing specimen 1 in filelist

Set scale = 3

Locator active (Esc to finish)

Figure 17: Digitizing window

Keep scale (y/n)?
y

Now, digitize each landmark with single click and the landmark is shown in red.
Select landmarks 1:11

Locator active (Esc to finish) Finish

Ifverbose = TRUE, digitizing is interac-
tive between landmark selection using a mouse and the R console. Once a landmark is selected, the user is
asked if the system should keep or discard the selection (y/n/a). If “y”, the user is asked to continue to select
the next landmark. If “n”, the user is asked to select it again. To digitize a missing landmark, simply
click on any location in the image. Then, when prompted to keep selection, choose ‘a’ (for absent). Missing
landmarks can only be included during the digitizing process when verbose=TRUE. If verbose = FALSE (as
in the example above) the digitizing of landmarks is continuous and uninterrupted. Here the user will not be
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prompted to approve each landmark selection. At the end of digitizing, the landmark coordinates and the
scale are written to a TPS file.

salamander.tps

LM = 11

0.913794820018337 0.728605670332276
1.04745503254995 0.58684483885935
0.654575013896415 0.765058455568172
0.168537877417812 0.671901337743106
0.103732925887331 0.736706289273586
0.0551292122394711 0.813662169216032
0.103732925887331 0.927070834394373
0.330550256244013 1.04452980904337
0.686977489661655 1.00402671433682
1.03530410413799 0.927070834394373
1.71575609520803 0.643549171448521

ID=mvz2066081

15.2 3D data collection: landmarks (digit.fixed)

An interactive function to digitize three-dimensional (3D) landmarks. Input for the function is either a matrix
of vertex coordinates defining a 3D surface object or a mesh3d object as obtained from read.ply (see below).
Function

digit.fixed(spec, fixed, index = FALSE, ptsize = 1, center = TRUE)

Arguments

o spec An object of class shape3d/mesh3d, or matrix of 3D vertex coordinates

o fized Numeric The number landmarks (fixed, and curve sliders if desired)

e inder Logical Whether selected landmark addresses should be returned

o ptsize Numeric Size to plot the mesh points (vertices), e.g., 0.1 for dense meshes, 3 for sparse meshes
« center Logical Whether the object ‘spec’ should be centered prior to digitizing (default center=TRUE)

Function for digitizing “n” three-dimensional landmarks. The landmarks are “fixed” (traditional landmarks).
They can be later designated as “curve sliders” (semilandmarks, that will “slide” along curves lacking known
landmarks if required. A sliding semi-landmark (“sliders”) will slide between two designated points, along
a line tangent to the specified curvature, and must be defined as “sliders” using function define.sliders
or with similar format matrix made outside R. For 3D “surface sliders” (surface semilandmarks that slide
over a surface) the function digitsurface should be used instead. NOTE: Function centers the mesh before
digitizing by default (center=TRUE). If one chooses not to center, specimen may be difficult to manipulate
in rgl window.

15.2.1 Digitizing

3D Digitizing functions in geomorph are interactive between landmark selection using a mouse (see below
for instructions), and the R console. Once a point is selected, the user is asked if the system should keep
or discard the selection (y/n). If “y”, the user is asked to continue to select the next landmark. If “n” the
removes the last chosen landmark, and the user is asked to select it again. This can be repeated until the
user is comfortable with the landmark chosen. To digitize with a standard 3-button (PC): * the RIGHT
mouse button (primary) to select points to be digitized (click on a vertex to select) * the LEFT mouse button
(secondary) is used to rotate mesh, * the mouse SCROLLER (third/middle) is used to zoom in and out.
NOTE: Digitizing functions on MACINTOSH computers using a standard 3-button mice works as specified.
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Magcs using platform specific single button mice: * press button to rotate 3D mesh, * press button while
pressing COMMAND key to select points to be digitized (click on a vertex to select) * press button while
pressing OPTION key to adjust mesh perspective. * the mouse SCROLLER or trackpad two finger scroll
is used to zoom in an out. XQuartz must be configured: go to Preferences > Input > tick “Emulate three
button mouse”. NOTE: there is no pan (translate) functionality in rgl library for all platforms at this time.
This is why the function has a center=TRUE/FALSE option.

Example reading in a mesh with 24700 vertices

mandible <- read.ply("Mandible.ply")

digit.fixed(mandible, fixed=20, index=F, ptsize=1, center=T)
Select Landmark 1 #

Keep landmark 1(y/n)? #See picture step 2

y

Select Landmark 2 #See picture step 2

Keep landmark 2(y/n)?

y
Select Landmark 3 #See picture step 1

% RCL device § [Focus

Selected

Ian#marks
inred _ 1
/
Right-click \

O d VETLEX

Figure 18: A mesh digitized using digit.fixed

Function writes to the working directory an NTS file with the name of the specimen and .nts suffix containing
the landmark coordinates.

mandible.nts

"mandible

1 20 3 0 dim=3

13.2628089578878 10.2361171749175 -3.49646546534654
9.32980895788779 18.7309171749175 -1.94616546534654
-2.70691104211221 17.5351171749175 0.852234534653466
-13.7911610421122 15.6363171749175 0.945934534653464
-14.1681010421122 6.40941717491749 0.853034534653467
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If index=FALSE (default) function returns to the console an n x 3 matrix containing the x,y,z coordinates
of the digitized landmarks. If index=TRUE, function returns a list containing a matrix containing the x,y,z
coordinates of the digitized landmarks (selected)andamatrizofaddresses forlandmarksthatare” fized” (fix,
primarily for internal use). YouTube video of this function in action here: http://youtu.be/VK6bLbb4ipY

15.3 Importing 3D surface files (read.ply)

A function to read ply files, which can be used for digitizing landmark coordinates or for shape warps. Other
3D file formats are currently not supported. Other files can be converted to ply using for example Meshlab.

Function

read.ply(file, ShowSpecimen = TRUE, addNormals = TRUE)

Arguments

e file An ASCII ply file

o ShowSpecimen A logical value indicating whether or not the ply file should be displayed

e addNormals A logical value indicating whether or not the normal of each vertex should be calculated
(using addNormals [rgl])

Function reads three-dimensional surface data in the form of a single ply file (Polygon File Format; ASCII
format only, from 3D scanners such as NextEngine and David scanners). Vertices of the surface may then be
used to digitize three-dimensional points, and semilandmarks on curves and surfaces. The function opens the
ply file and plots the mesh, with faces rendered if file contains faces, and colored if the file contains vertex
color.

15.3.1 Example

reading a file called myply.ply in the working directory
read.ply ("myply.ply", ShowSpecimen=TRUE)

# view an example in the geomorph package

data(scallopPLY)

myply <- scallopPLY$ply

attributes (myply)

$names

[1] "vb" "it" "primitivetype" "material"
$class

[1] "mesh3d" '"shape3d"

plot3d(myply) # left image

# change color of mesh

myply$material <- "gray" # using color word (middle image)
myply$material <- "#FCE6C9" # using RGB code (right image)
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X! RGL device 1 [Focus] X| RGL device 1 [Focus] X! RGL device 1 [Focus]

## 3D data collection: landmarks and semilandmarks (buildtemplate) An interactive function to build
template of three-dimensional surface sliding semilandmarks. Input for the function is either a matrix of
vertex coordinates defining a 3D surface object or a mesh3d object as obtained from read.ply.

buildtemplate(spec, fixed, surface.sliders, ptsize = 1, center = TRUE)

Arguments

 spec Name of surface file, as either an object of class shape3d/mesh3d, or matrix of three-dimensional
vertex coordinates.

e fized Either: a single value designating the number of fixed template landmarks to be selected by
digit.fixed, OR a p-x-k matrix of 3D coordinates collected previously (e.g. in other software)

o surface.sliders The number of template surface sliders desired

o ptsize Size to plot the mesh points (vertices), e.g., 0.1 for dense meshes, 3 for sparse meshes

o center Logical Whether the object ‘spec’ should be centered prior to digitizing (default center=TRUE)

Function constructs a template of fixed landmarks and n “surface sliders”; semilandmarks that slide over
a surface. The user digitizes the fixed points, then the function finds n surface semilandmarks following
algorithm outlined in Gunz et al. (2005) and Mitteroecker and Gunz (2009). Surface semilandmarks are
roughly equidistant set of predetermined number of points, chosen over the mesh automatically using a
nearest-neighbor approach. The set of fixed and surface slider landmarks are exported as a “template”, which
is used to extract a set of similarly numbered landmarks on every specimen using function digitsurface.
Some of the “fixed” landmarks can be later designated as “curve sliders” using function define.sliders
if required - see details in digit.fixed. To ensure a strong match between the scan and the template, it
is recommended that a reasonable number of fixed points be used. These fixed points can be designated
as “curve sliders” later using function define.sliders, see the function digit.fixed for details. NOTE:
Function centers the mesh before digitizing by default (center=TRUE). If one chooses not to center, specimen
may be difficult to manipulate in rgl window.

15.3.2 Digitizing

as before in digit.fixed, digitizing 16 landmarks on a mesh and then automatically calculate 150 surface
sliding semilandmarks

myplyl <- read.ply("myplyl.ply", ShowSpecimen=FALSE)

buildtemplate(spec = myplyl, fixed = 16, surface.sliders = 150, ptsize=1)

Select Landmark 1 #See picture step 1

Keep landmark 1(y/n)? #See picture step 2

M
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. Select all of the fixed landmarks, and then
the function will calculate the position of the surface sliding landmarks on the mesh, and plot them in blue.

BROR b

Function writes to the working directory
three files: an NTS file with the name of the specimen and .nts suffix containing the landmark coordinates,
“template.txt” containing the same coordinates for use with the function digitsurface, and “surfslide.csv”,
a file containing the address of the landmarks defined as “surface sliders” for use with gpagen. Function also
returns to console an n x 3 matrix containing the x,y,z coordinates of the digitized landmarks. NOTE: that
the function will overwrite any existing template.txt file in the directory.

myplyl.nts

"myplyl
1 166 3 0 dim=3
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13.2628089578878 10.2361171749175 -3.49646546534654
9.32980895788779 18.7309171749175 -1.94616546534654
-2.70691104211221 17.5351171749175 0.852234534653466
-13.7911610421122 15.6363171749175 0.945934534653464
-14.1681010421122 6.40941717491749 0.853034534653467

template.txt "xpts" "ypts" "zpts" 13.2628089578878 10.2361171749175 -3.49646546534654
9.32980895788779 18.7309171749175 -1.94616546534654 -2.70691104211221 17.5351171749175
0.852234534653466 -13.7911610421122 15.6363171749175 0.945934534653464 -14.1681010421122
6.40941717491749 0.853034534653467 ...

surfslide.csv

X

17
18
19
20
21
22
23

which can be read in for use with gpagen.

sliders <- as.matrix(read.csv("surfslide.csv", header=T))

YouTube video of this function in action here: http://youtu.be/7TWWvImA2QE4

15.3.3 AUTO mode

The function as described above (for interactive mode) calls digit.fixed, prompting the user to select fixed
landmarks in the rgl window. However if the user has digitized these fixed landmark elsewhere (e.g., in other
software), then the input for parameter ‘fixed’ can be a p-x-k matrix of 3D coordinates. In this case, the
function will automatically use these landmarks to build the template of sliding semilandmarks.

To use:

myplyl <- read.ply("myplyl.ply", ShowSpecimen=FALSE)

# read in fized landmarks digitized elsewhere (e.g. using IDAV Landmark Editor)

lmks <- readmulti.nts("myplyl_ fixedlmks.nts")

# readmulti.nts returns a 3D array, so need to use just first specimen, as lmks/[,,1]
buildtemplate(spec = myplyl, fixed = lmks[,,1], surface.sliders = 150ptsize=1)
Select Landmark 1 #See picture step 1

Keep landmark 1(y/n)? #See picture step 2

y

Any of the geomorph readland functions can be used in this case, or any read function of R, depending on
the data file of the fixed landmarks being imported. If using read, make sure the returned matrix contains
only numerical values and is a matrix, not a data.frame.

15.3.4 editTemplate

An interactive function to remove landmarks from a 3D template file. Function
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editTemplate(template, fixed, n)

Arguments

e template Matrix of template 3D coordinates.
o fized Number of “fixed” landmark points (non surface sliding points)
e n Number of points to be removed

Function edits a ‘template.txt’ file made by buildtemplate, which must be in current working directory.
Function overwrites ‘template.txt’ in working directory with edited version. Use read.table(“template.txt”,
header = T).

editTemplate (template, fixed=16, n=2)
Remove Template Points

1 of 2 points have been removed

2 of 2 points have been removed
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#4# 3D data collection: landmarks and semilandmarks
(digitsurface) An interactive function to digitize three-dimensional (3D) landmarks on a surface lacking
known landmarks, used after buildtemplate. Input for the function is either a matrix of vertex coordinates
defining a 3D surface object or a mesh3d object as obtained from read.ply. For this function to work the
“template.txt” file, made by buildtemplate must be in the working directory.

Function

digitsurface(spec, fixed, ptsize = 1, center = TRUE)

Arguments

o spec Name of surface file, as either an object of class shape3d/mesh3d, or matrix of three-dimensional
vertex coordinates.

e fized Either: a single value designating the number of fixed template landmarks to be selected by
digit.fixed, OR a p-x-k matrix of 3D coordinates collected previously (e.g. in other software)

e ptsize numeric: Size to plot the mesh points (vertices), e.g., 0.1 for dense meshes, 3 for sparse meshes

o center Logical Whether the object ‘spec’ should be centered prior to digitizing (default center=TRUE)

Function for digitizing fixed 3D landmarks and placing “surface sliders”, semilandmarks that slide over
a surface. Following selection of fixed points (see digitizing below), function finds surface semilandmarks
following algorithm outlined in Gunz et al. (2005) and Mitteroecker and Gunz (2009). digitsurface
finds the same number of surface semilandmarks as the “template.txt” file (created by buildtemplate)
by downsampling scanned mesh, registering template with current specimen via GPA. A nearest neighbor
algorithm is used to match template surface landmarks to current specimen’s. To use function digitsurface,
the template must be constructed first, and “template.txt” be in the working directory. Some of the
“fixed” landmarks digitized with digitsurface can be later designated as “curve sliders” using function
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define.sliders if required (see details in digit.fixed). NOTE: Function centers the mesh before digitizing
by default (center=TRUE). If one chooses not to center, specimen may be difficult to manipulate in rgl
window. Digitizing: as before in digit.fixed.

Example, digitizing 16 landmarks on a mesh and fit a template to add 150 surface sliding semilandmarks
myply2 <- read.ply("myply2.ply", ShowSpecimen=FALSE)

digitsurface(myply2, fixed=16, pysize=1

Select Landmark 1

Keep Landmark 1(y/n)?

5w 1]

Select all of the fixed landmarks, and then the function will
calculate the position of the surface sliding landmarks on the mesh based on the template (blue), and plot
them in green.

Function writes to the working directory an N'TS file with the name of the specimen and .nts suffix containing
the landmark coordinates.

myply2.nts

"myply2

1 166 3 0 dim=3

13.6450089578878 9.85741717491749 -3.49156546534654
9.70490895788779 18.3504171749175 -1.90256546534653
-2.33683104211221 17.5362171749175 0.855334534653466
-14.1518710421122 15.2515171749175 1.06203453465347
-14.1681010421122 6.40941717491749 0.853034534653467

YouTube video of this function in action here: http://youtu.be/4S8XcMMgUyw

15.3.5 AUTO mode

The function as described above (for interactive mode) calls digit.fixed, prompting the user to select
fixed landmarks in the rgl window. However if the user has digitized these fixed landmark elsewhere (e.g.,
in other software), then the input for parameter ‘fixed’ can be a p-x-k matrix of 3D coordinates. In this
case, the function will automatically use these landmarks and fit the template of sliding semilandmarks. See
buildtemplate for example.
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15.4 Calculate semilandmarks along a curve (digit.curves)

A function to calculate equidistant two-dimensional and three-dimensional semilandmarks along a curve.
These landmarks will be treated as “sliders” in Generalized Procrustes analysis gpagen. This type of
semilandmark “slides” along curves lacking known landmarks (see Bookstein 1997 for algorithm details).
Each sliding semilandmark (“sliders”) will slide between two designated points, along a line tangent to the
specified curvature, as specified by define.sliders.

Function

digit.curves(start, curve, nPoints, closed=TRUE)

Arguments

o start A vector of coordinates for the fixed landmark defining the start of the curve

e curve A p-x-k matrix of 2D or 3D coordinates for a set of ordered points defining a curve
e nPoints Numeric how many semilandmarks to place equidistantly along the curve

o closed Logical Whether the curve is closed (TRUE) or open (FALSE)

The function is based upon tpsDig2 ‘resample curve by length’ for 2D data by James Rohlf. The start of
the curve is a fixed landmark on the curve that is equivalent (homologous) in each specimen in the sample
(and will be treated as a fixed point during Procrustes Superimposition using gpagen). Then nPoints are
calculated along the curve at equidistant points from the start to the end.

‘curve’ is a p-x-k matrix of 2D or 3D coordinates for a set of ordered points defining a curve. This can be the
pixels of an outline calculated in ImageJ (save xy coordinates), or obtained by automatically thresholding a
jpeg using Momocs import__jpg function (https://github.com/vbonhomme/Momocs/), or any other reasonable
way of obtaining ordered coordinates along a curve (including sampling by hand using digit.fixed or
digitize2d - but note that there should be more points defining the curve than nPoints in order to accurately
calculate the semilandmarks).

If ‘closed = T’, the function returns the coordinates of the ‘start’ landmark plus nPoints. If ‘closed = F’, the
function returns the coordinates of the ‘start’ landmark, plus nPoints and the end of the curve.

Example Here we have an outline of a leaf in 2D, exported as a .txt file of x,y, coordinates from ImageJ (see
warpRefOutline for details on how this can be done). The input could also be a .nts file from digit.fixed,
a .dta from IDAV Landmark, or .tps file from digitize2d or any other reasonable way to get coordinates
defining a set of points that together describe a curve. The resulting coordinate matrix is to be used in
replacement of the input curve coordinates for analyses.

curve <- as.matrix(read.table("Chusquea pittieri_1.txt", skip=4))

start <- c(8.5143, 11.8367) # know the z,y coordinates of the start of the curve
plot(curve, asp=T, pch=19, cex=0.1) # plot the curve

points(start[1], start[2], pch=19, cex=0.5, col="red") # show the starting point

lmks <- digit.curves(start, curve, nPoints=20, closed = T) # run function
points(Imks[,1], 1lmks[,2], pch=19, cex=0.5, col='"green") # plot the sampled points

1mks
[,1] [,2]
[1,] 8.5143 11.8367
[2,] 9.4671 11.2816
[3,] 10.3347 10.5267

[4,] 11.1673 9.7204
[5,] 11.9918 8.9059
[6,] 12.8146 8.0898
[7,] 13.6082 7.2609
[8,] 14.3863 6.4327
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Figure 19: An example curve defined by pixels extracted from a picture in ImageJ. Start is in red

[9,] 15.1347 5.5750
[10,] 15.8599 4.6939
[11,] 16.5762 3.8367
[12,] 16.5224 3.7333
[13,] 15.6810 4.4980
[14,] 14.8422 5.2653
[15,]1 14.0000 6.0294
[16,] 13.1725 6.8082
[17,] 12.3579 7.6163
[18,] 11.5347 8.4156
[19,]1 10.7045 9.2082

[20,] 9.8901 10.0327
[21,] 9.1102 10.8917
# lmks ©s the matriz of semilandmarks defining the curve

12

10

Figure 20: Semilandmarks digitized on the curve (green)

15.5 Calculate linear distances between landmarks (interlmkdist)

A simple function to calculate linear distances between a set of landmark coordinates (interlandmark distances)

Function
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interlmkdist (A, lmks)

Arguments

o A A 3D array (p x k x n) containing landmark coordinates for a set of specimens

e Imks A matrix or dataframe of landmark addresses for the start and end landmarks defining m linear
measurements (can be either 2-x-m or m-x-2). Either the rows or the columns should have names ‘start’
and ‘end’ to define landmarks

Function takes a 3D array of landmark coordinates from a set of specimens and the addresses for the start and
end landmarks defining linear measurements and then calculates the interlandmark distances. The function
returns a matrix of linear distances for all specimens. If the ‘lmks’ matrix has row or column names defining
the name of the linear measurements, the returned matrix will use these for column names (see example). If
only two interlandmark distances, ‘lmks’ input must be m x 2. Function returns a matrix (n x m) of m linear
distances for n specimens.

16 Frequently Asked Questions

This section will cover some of geomorph’s frequently asked questions.

1) T've loaded my TPS file but I get a warning that no names were extracted. My TPS file has specimen
names in it, what do I do?

e For TPS files it is necessary to specify whether the specimen name should be read from the ID= line or
the IMAGE= line. See chapter 2 for more details.

2) I want to add a groups to my data analysis, what do I do?

o Grouping variables can be made in R (e.g., ¢) or imported from outside (e.g., as a .csv file). See chapter
3 for more details.

3) How many iterations should I use in permutation tests?

e The default for geomorph functions is often 999. Generally more is better, but too many can be excessive
and does not lead to more power. See section on permutation tests in the introduction for more details.

4) How do I reflect my specimens before using gpagen or bilat.symmetry?

e Reflecting a set of specimens may be accomplished by multiplying one coordinate dimension by ‘-1’ for
these structures (either the x-, the y-, or the z-dimension). To do this:

mydata # this %s your 3D array of raw variables needing to be reflected

refl <- array(l, dim=dim(mydata)) # make an array the same dimensions as mydata and fill it with 1s
refl[,1,] <- -1 # replace the = coordinate column with -1

mydata <- mydata * refl # multiply the two arrays to reflect

5) I've loaded my TPS file and I got a warning that “Not all specimens have scale...”. I defined a scale by
digitizing two landmarks on the scale bar, what do I do?

e Let’s say that landmarks 47 and 48 define the ends of the 10mm scale bar, and coords is a 3D array of
the raw coordinate data:

for (i in 1:dim(coords) [3]){
scb <- coords[47:48,,i]
scale <- sqrt((scb[1,1]-scb[2,1])"2+(scb[1,2]-scb[2,2])72)/1000
coords([,,i] <- coords[,,il*scale }

coords <- coords[-(47:48),,] # remove the landmarks
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